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Gordon that was obtained by the method of weighted words. After providing a q-theoretic
proof of the new companion theorem, we discuss its analytic representation and its link to
the key identity of Alladi-Andrews-Gordon.
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1. Introduction

A Rogers-Ramanujan (R-R) type identity is a q-hypergeometric identity in the form of
an infinite (possibly multiple) series equals an infinite product. The series is the generating
function of partitions whose parts satisfy certain difference conditions, whereas the product
is the generating function of partitions whose parts usually satisfy certain congruence
conditions. For a discussion of a variety of R-R type identities, see Andrews [16], Ch.9.

The partition theorem which is the combinatorial interpretation of an R-R type iden-
tity, is called a Rogers-Ramanujan type partition identity. A q-hypergeometric R-R type
identity is usually discovered first and then its combinatorial interpretation as a partition
theorem is given. There are important instances of Rogers-Ramanujan type partition iden-
tities being discovered first and their q-hypergeometric versions given later. Perhaps the
first such significant example is the 1926 partition theorem of Schur [24]:

Theorem S:
Let T (n) denote the number of partitions of an integer n into parts ≡ ±1 (mod 6).
Let S(n) denote the number of partitions of n into distinct parts ≡ ±1 (mod 3).
Let S1(n) denote the number of partitions of n into parts that differ by ≥ 3, where the

inequality is strict if a part is a multiple of 3.
Then

T (n) = S(n) = S1(n).

In the early 1990s, Alladi and Gordon [9] obtained a generalization and two parameter
refinement of the equality S(n) = S1(n), and in that process derived a key identity, namely
a q-hypergeometric identity in two free parameters that yielded Theorem S as a special
case. Thus the R-R type identity for Schur’s theorem came half a century later.

—————-
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One of the deepest R-R type partition identities is a 1967 theorem of Göllnitz [23]:
Theorem G:
Let B(n) denote the number of partitions of n into parts ≡ 2, 5, or 11 (mod 12).
Let C(n) denote the number of partitions of n into distinct parts ≡ 2, 4, or 5 (mod 6).
Let D(n) denote the number of partitions of n into parts that differ by ≥ 6, where the

inequality is strict if a part is ≡ 0, 1, or 3 (mod 6), and with 1 and 3 not occurring as parts.
Then

B(n) = C(n) = D(n).

Göllnitz’s succeeded in proving Theorem G in the refined form

(1.1) C(n; k) = D(n; k),

where C(n; k) and D(n; k) denote the number of partitions of the type counted by C(n)
and D(n) respectively, with the extra condition that the number of parts is k, and with
the convention that parts ≡ 0, 1, or 3 (mod 6) are counted twice.

The equality B(n) = C(n) is easy because

∞∑
n=0

B(n)qn =
∞∏
m=1

1

(1− q12m−10)(1− q12m−7)(1− q12m−1)

=
∞∏
m=1

(1 + q6m−4)(1 + q6m−2)(1 + q6m−1) =
∞∑
n=0

C(n)qn.(1.2)

This is one reason that we focus on the deeper equality C(n) = D(n), the second reason
being that it is this equality which can be refined as in (1.1).

Göllnitz’s proof of Theorem G and of (1.1) is very intricate and difficult. Andrews
[14] subsequently provided a simpler proof. Theorem G is a good example of a Rogers-
Ramanujan type partition theorem for which its q-hypergeometric representation came
much later. In 1995, Alladi, Andrews, and Gordon [8] established the following key identity∑

i,j,k

aibjck
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs+Tδ+Tε+Tφ−1(1− qα(1− qφ))

(q)α(q)β(q)γ(q)δ(q)ε(q)φ

=
∑
i,j,k

aibjckqTi+Tj+Tk

(q)i(q)j(q)k
= (−aq)∞(−bq)∞(−cq)∞ ,(1.3)

and viewed a three parameter refinement of Theorem G and (1.1) as emerging from the
R-R type identity (1.3) under the substituions

(1.4) (dilation) q 7→ q6, and (translations) a 7→ aq−4, b 7→ bq−2, c 7→ cq−1.

In (1.3) and throughout, Tm = m(m + 1)/2 is the m-th triangular number. Also in
(1.3) and in what follows, we have made use of the standard notation

(1.5) (z)n = (z; q)n =

n−1∏
j=0

(1− zqj),
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(1.6) (z)∞ = (z; q)∞ = lim
n→∞

(z; q)n =
∞∏
j=0

(1− zqj), when |q| < 1.

When the base is q, then as in (1.5) and (1.6) we simply write (z)n and (z)∞, but when
the base in anything other than q, it will always be displayed.

The partition interpretation of (1.3) in terms of parts which are colored integers sat-
isfying certain difference conditions and a specific lexicographic ordering, and the way in
which these difference conditions under the substitutions (1.4) translate to the conditions
governing D(n) in Theorem G, will be discussed in Section 3. In [8] it was noted that by
changing the ordering of the colored integers, companion identities to Theorem G can be
produced and an example was given. Alladi [1], [3], considered reformulations of Theorem
G by changing the substitutions in (1.4); it was shown in [5] and [6] that these reformula-
tions led to other key identities which were simpler in structure compared to (1.3).

Historically, many of the most famous Rogers-Ramanujan type identities came in
pairs, such as the two prototype Rogers-Ramanujan identities to the modulus 5 and the
two Göllnitz-Gordon identities to the modulus 8. There are also the two Little Gollnitz
identities to the modulus 8. Schur’s classic partition theorem involving parts ≡ ±1 (mod 6)
(or its version into distinct parts ≡ ±1 (mod 3)), does not have a companion as in the
above cases, but companions in a different sense were found by Andrews [15] using a
computer search, and by Alladi-Gordon [10] by the method of weighted words by changing
the lexicographic ordering of the colored integers. The companions found in [8] and in
[10] by changing the lexicographic ordering, had values the same as the original partition
functions. So let us call such companions as equi-valued companions or mates, with the
term companion used here only when the values are not identical with the original.

It appears that Göllnitz regarded his Theorem G as a three dimensional extension of
Schur’s theorem because his proof of Schur’s theorem is patterned along Gleissberg’s proof
[22] of Schur’s theorem. Thus in analogy with Schur’s theorem which has only mates but
no companions, subsequent researchers did not seek companions for Göllnitz’ theorem.
However, in 1999, Alladi [4] found a companion to Gollnitz’ theorem by replacing the
residue classes 2, 4, 5 (mod 6) of C(n) in Theorem G by 1, 3, 5 (mod 6), which lent
itself to a nice combinatorial treatment using 2-modular Ferrers graphs because C(n) then
relates to partitions into distinct odd parts. What we produce here in Theorem A below
is not just a companion to Theorem G but its dual.

The discovery of Theorem A was due to a fortuitous circumstance. We were attend-
ing a seminar at the University of Florida in which graduate student Keith Grizzell was
reporting his joint work with Alexander Berkovich on partition function differences [19].
During questions at the end of the talk, we realized that a specialization of their result
was the proof that for each n, the coefficient of qn in the power series expansion of

(1.7)
∞∏
m=0

1

(1− q12m+1)(1− q12m+4)(1− q12m+7)

was at least the size of B(n), the coefficient of qn in the expansion of the product in (1.2).
(For the reason as to why we wrote the products in (1.4) as starting from m = 1, and the
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product in (1.7) as starting from m = 0, see Section 5). This led us to wonder whether
one could construct a new companion to Theorem G. This is what led us to

Theorem A:
Let B∗(n) denote the number of partitions of n into parts ≡ 1, 7, or 10 (mod 12).
Let C∗(n) denote the number of partitions of n into distinct parts ≡ 1, 2, or 4 (mod 6).
Let D∗(n) denote the number of partitions of n into parts that differ by at least 6,

where the inequality is strict if the larger part is ≡ 0, 3, or 5 (mod 6), with the exception
that 6+1 may appear in the partition. Then

B∗(n) = C∗(n) = D∗(n).

In the next section we provide a q-theoretic proof of Theorem A similar in spirit to
the proof of Theorem G in [14]. In Section 4, we compare Göllnitz’ Theorem G and our
Theorem A with the two hierarchies of theorems due to Andrews [12], [13] for the moduli
2k−1 starting from Schur’s theorem to the modulus 3. This comparison helps us construct
the key identity that represents Theorem A and this is done in Section 5; it will be seen
that even though it is constructed very differently, it is actually the same as (1.3). What is
interesting is that Theorem A is not a mate but a companion to Theorem G although the
key identity from which it is born is the same! Notice that Theorems A and G are duals
because the residues 1,2,4 (mod 6) defining C∗(n) in Theorem A are replaced by residues
-1, -2, -4 (mod 6) defining C(n) in Theorem G. Similarly the residues the residues 1, 7, 10
(mod 12) defining B∗(n) in Theorem A are replaced by the residues -1, -7, -10 (mod 12) in
Theorem G. In view of the key identity, there is a three parameter refinement of Theorem
A. This stated in Section 5 and proved q-theoretically in Section 6. Finally in Section 7 we
discuss the role of key identities in producing companions to R-R type partition theorems.

It was Basil Gordon who drew Alladi’s attention to the fact the method of weighted
words introduced in [9] to study Schur’s theorem could also be used to generalize Göllnitz’
theorem. Thus we feel honored to dedicate this paper to the memory of Professor Gordon.

2. Proof of Theorem A

Since the equality B∗(n) = C∗(n) is trivial (see (1.2)), we focus on the deeper equality
C∗(n) = D∗(n). Just as Göllnitz established the refined equality (1.1), our proof here will
establish the refinement of Theorem A given by

(2.1) C∗(n, k) = D∗(n, k),

where k is the number of parts with the convention that parts ≡ 0, 3, 5 (mod 6) are
counted twice.

Proof: Let d(m; t, q) denote the polynomial generating function of the partitions enu-
merated by D∗(n) with the added conditions that

(i) all parts are ≤ m,
(ii) the exponent of t is the number of parts with the convention that parts ≡ 0, 3, or

5 (mod 6) are counted twice, and
(iii) the exponent of q is the number being partitioned.
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We claim that

(2.2) d(6m; t, q) + t2q6m+3d(6m− 6; t, q) = (1 + tq)(1 + tq2)(1 + tq4)d(6m− 8; tq6, q).

By iterating (2.2) and letting m→∞, we get

(2.3) d(∞; t, q) =
∞∏
m=0

(1 + tq6m+1)(1 + tq6m+2)(1 + tq6m+4),

which yields (2.1) because the coefficients of tkqn on the left and right hand sides of (2.3)
are D∗(n; k) and C∗(n; k) respectively. Thus our objective here is to prove (2.2).

We define

(2.4) χ(m) = 0, if m ≡ 1, 2, 4 (mod 6), and 1 if m ≡ 0, 3, 5 (mod 6).

Also let

(2.5) d(m; t, q) = 1 for − 6 ≤ m ≤ 0, and d(m; t, q) = 0 for n < −7.

Then (2.4), (2.5) and the definition of d(m; t, q) yield

(2.6) d(m; t, q) = d(m− 1; t, q) + t1+χ(m)qmd(m− 6− χ(m); t, q) + ε(m),

where

(2.7) ε(m) = t3q7 if m = 6, and 0 otherwise.

To realize (2.6), note that the difference

d(m; t, q)− d(m− 1; t, q)

is the generating function when the largest part is m. This accounts for the t1+χ(m)qm on
the right in (2.6). If this part m is removed from the partition, then by the definition of the
difference conditions governing the partitions enumerated byD∗, the resulting partition has
largest part ≤ m−6−χ(m). The generating function of such partitions is d(m−6−χ(m))
as on the right in (2.6) with one exception which is accounted by the ε(m) term in (2.6)
as given by (2.7); this term corresponds to the exceptional partition 6+1 of the number 7
having the largest part m = 6, with 6 being counted twice. This justifies (2.6).

For the sake of clarity in our calculations, we will actually list the six cases of (2.6)
corresponding to the six residue classes modulo 6, namely:

(2.8.1) d(6m; t, q) = d(6m− 1; t, q) + t2q6md(6m− 7; t, q)

(2.8.2) d(6m− 1; t, q) = d(6m− 2; t, q) + t2q6m−1d(6m− 8; t, q)
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(2.8.3) d(6m− 2; t, q) = d(6m− 3; t, q) + tq6m−2d(6m− 8; t, q)

(2.8.4) d(6m− 3; t, q) = d(6m− 4; t, q) + t2q6m−3d(6m− 10; t, q)

(2.8.5) d(6m− 4; t, q) = d(6m− 5; t, q) + tq6m−4d(6m− 10; t, q)

(2.8.6) d(6m− 5; t, q) = d(6m− 6; t, q) + tq6m−5d(6m− 11; t, q)

It is to be noted that the anomalous ε(m) in (2.6) requires that m > 1 for the above
six equations to hold. For m ≤ 6 we calculate d(m; t, q) from (2.6).

For convenience, we set

(2.9) h(m; t) = d(6m− 2; t, q)

and

(2.10) k(m; t) = d(6m− 4; t, q).

By combining (2.8.1) and (2.8.2) we see that

(2.11) d(6m; t, q) = h(m; t) + t2q6m−1(1 + q)h(m− 1; t) + t4q12m−7h(m− 2; t).

On the other hand, (2.8.4) asserts that

(2.12) d(6m− 3; t, q) = k(n; t) + t2q6m−3k(m− 1; t),

whereas by (2.8.5)

(2.13) d(6m− 5; t, q) = k(n; t)− tq6m−4k(m− 1; t).

Hence by (2.8.6) and (2.13) we get

(2.14) d(6m− 6; t, q) = k(n; t)− tq6m−5(1 + q)k(m− 1; t) + t2q12m−5k(m− 2; t).

Note that by (2.8.3)

(2.15) d(6m− 3; t, q) = h(n; t)− tq6m−2h(m− 1; t).

If we set

(2.16) S1(m) := h(m; t)− tq6m−2h(m− 1; t)− k(m− 1; t)− t2q6m−3k(m− 1; t),
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then (2.12) and (2.15) show that

(2.17) S1(m) = 0, for m ≥ 2.

Similarly, by setting

S2(m) := h(m− 1; t) + t2q6m−7(1 + q)h(m− 2; t) + t4q12m−19h(m− 3; t)

(2.18) −k(m; t) + tq6m−5(1 + q)k(m− 1; t)− t2q12m−5k(m− 2; t),

we see that (2.12) and (2.15) yield

(2.19) S2(m) = 0, for all m.

What we want now is a linear recurrence for the h(n). This is a pure linear algebra
problem. To this end, let us regard the six equations

(2.20.1) S1(m− i) = 0, for 0 ≤ i ≤ 2,

and

(2.20.2) S2(m− i) = 0, for 0 ≤ i ≤ 2,

as linear equations in the variables h(m; t), k(m; t), k(m− 1; t), k(m− 2; t), k(m− 3; t) and
k(m − 4; t). Solving this system will yield h(m; t) in terms of h(m − i; t) for 1 ≤ i ≤ 4.
The result is that

(2.21) J(m) := F (m, t, h(m; t), h(m− 1; t), h(m− 2; t), h(m− 3; t), h(m− 4; t)) = 0,

where

(2.22) F (m, t,X, Y, Z,W, V ) = X−(t3q18m−29+t4q12m(q−15+q−16+q19))W−t6q18m−34V

−(1 + tq6m(q−2 + q−4 + q−5))Y − t2(q6m(q−3 + q−6 + q−7)− q12m(q−12 + q−13 + q−15))Z.

Now clearly by the definition of J(m), the right hand side of (2.2) satisfies

(2.23) F (m−1, tq6, h(m−1; tq6), h(m−2; tQ6), h(m−3; tq6, h(m−4; tq6, h(m−5; tq6)) = 0.

As for the left hand side of (2.2), we note that

(2.24) G(n) := d(6m; t, q) + t2q6m+3d(6m− 6; t, q) =

h(m; t)+t2q6m−1h(m−1; t)(1+q+q4)+t4q12m−7(1+q3+q4)h(m−2; t)+t6q18m−16h(m−3, t),
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by (2.11). Thus

(2.25) F (m− 1, tq6, G(m), G(m− 1), G(m− 2), G(m− 3), G(m− 4))

= J(m)+t2q6m−1(1+q+q4)J(m−1)+t4q12m−7(1+q3+q4)J(m−2)+t6q18m−16J(m−3) = 0,

by (2.21), provided m ≥ 8.
Finally, comparing (2.24) and (2.25) we see that both sides of (2.2) satisfy the same

fourth order recurrence provided m ≥ 8. The validity of (2.2) for 2 ≤ m ≤ 8 was checked
using Macsyma. Hence the two sides of (2.2) are identical. That proves (2.1) which is a
refined version of Theorem A.

3. Theorem G via the method of weighted words

In order to derive the key identity for Theorem A, we will first describe here how the
key identity (1.3) for Theorem G was obtained, and the generalization and refinement of
Theorem G that it provided. That is, we will now sketch the main ideas of the method of
weighted words approach to Theorem G.

The method was initiated by Alladi-Gordon [9] to obtain generalizations and refine-
ments of Schur’s celebrated 1926 partition theorem [24]. The main idea in [9] was to
establish the key identity

(3.1)
∑
i,j

aibj
∑
m

qTi+j−m+Tm

(q)i−m(q)j−m(q)m
= (−aq)∞(−bq)∞,

and to view a two parameter refinement of Schur’s theorem involving partitions into distinct
parts ≡ 1, 2(mod 3) as emerging from (3.1) under the transformations

(3.2) (dilation) q 7→ q3, and translations a 7→ aq−2, b 7→ bq−1.

Two proofs of (3.1) were given in [9], one involving the q-Chu-Vandermonde summation,
and another by a combinatorial interpretation of an equivalent version of (3.1). Both
proofs were much easier compared to the proof of (1.3) in [8].

The interpretation of the product in (3.1) as the generating function of bi-partitions
into distinct parts in two colors is clear. In [9] it was shown that the series in (3.1) is
the generating function of partitions (= words with weights attached) into distinct parts
occurring in three colors - two primary colors a and b, and one secondary color ab, and
satisfying certain gap conditions. It was Gordon’s insight that one ought to start with two
primary colors (in undilated form) as in the product in (3.1), and derive Schur’s theorem
as a dilated version.

With Schur’s theorem having been successfully generalized by the method of weighted
words, Gordon suggested to Alladi that the method ought to be applied to generalize and
refine Theorem G. This would require three primary colors a, b, c and three secondary
colors ab, ac.bc. We now describe the principal ideas of this method for Theorem G.

We consider the integer 1 as occuring only in three primary colors a, b and c, but the
integers n ≥ 2 as occuring in all six colors - a, b, c as well as ab, ac and bc. An integer n in

8



color a is denoted by symbol an, with similar interpretation for the symbols bn, cn, abn, acn,
and bcn. The alphabets a, b, c play a dual role; on the one hand they represent colors and
on the other they are free parameters.

To define partitions we need an ordering of the symbols and the one we choose is

(3.3) a1 < b1 < c1 < ab2 < ac2 < a2 < bc2 < b2 < c2 < ab3 < ...

The effect of the substitutions (1.4) is to convert the symbols to

(3.4)

{
am 7→ 6m− 4, bm 7→ 6m− 2, cn 7→ 6m− 1, form ≥ 1,

abm 7→ 6m− 6, acm 7→ 6m− 5, bcn 7→ 6m− 3, form ≥ 2.

so that the ordering (3.3) becomes

(3.5) 2 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < 11 < 12 < ...,

This is one reason for the choice of the ordering of symbols in (3.3), because they convert
to the natural ordering of the integers in (3.5) under the transformations (3.4).

To view Theorem G in this context, we think of the primary colors a, b, c as corre-
sponding to the residue classes 2,4 and 5(mod 6) and so the secondary colors ab, ac, bc
correspond to the residue classes 2 + 4 ≡ 6, 2 + 5 ≡ 7 and 4 + 5 ≡ 9(mod 6). Note that
integers of secondary color occur only when n ≥ 2 and so ab1, ac1 and bc1 are missing in
(3.3). This is why integers ac1 = 1 and bc1 = 3 do not appear in (3.5). This explains the
absence of 1 and 3 among the parts enumerated by D(n) in Theorem G. Note that ab1
corresponds to the integer 0, which is not counted as a part in ordinary partitions anyway.

In (3.3) for a given subscript, the ordering of the colors is

(3.5) ab < ac < a < bc < b < c.

We use (3.5) to say for instance that ab is of lower order compared to a, or equivalently
that a is of higher order than ab. We also use the term Level for the subscript of a symbol
when referring to a collection of symbols with the same subscript. For example, in the
ordering (3.3), we have listed all symbols at Level 1, followed by symbols at Level 2, etc.

By a partition (word) π we mean a collection of symbols in non–increasing order as
given by a prescribed ordering of the symbols. In this section we use the ordering as
in (3.3). By σ(π) we mean the sum of the subscripts of the symbols π. For example
ab3c2c2b2a2c1a1a1 is a partition π of the integer σ(π) = 14. Also the gap between any
two symbols is the absolute value of the difference between their subscripts. In discussing
partitions, we think of the subscripts as weights or parts.

By a vector partition π = (π1;π2;π3) of n, we mean that πj are partitions (words),
and that

σ(π) = σ(π1) + σ(π2) + σ(π3) = n.

The product in (1.4) is clearly the generating function of vector partitions in which each of
the components π1, π2 and π3 are partitions into distinct parts in colors a, b, c respectively.

To understand the partitions whose generating function is the series in (1.3), we
consider Type 1 partitions π which are of the form x1 +x2 + . . . , where the xi are symbols
from (3.3) with the condition that the gap between xi and xi+1 is ≥ 1 with strict inequality
if xi of a lower order (color) compared xi+1 or if xi and xi+1 are of the same secondary
color. The principal result of Alladi-Andrews-Gordon [8] which is a substantial extension
of Theorem G is the following:
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Theorem 1: Let C(n; i, j, k) denote the number of vector partitions (π1;π2;π3) of n
such that π1 has i distinct parts all in color a, π2 has j distinct parts all in color b, and π3
has k distinct parts all in color c.

Let D(n;α, β, γ, δ, ε, φ) denote the number of Type 1 partitions of n having α a−parts,
β b− parts, . . . , and φ bc− parts.

Then

C(n; i, j, k) =
∑

i=α+δ+ε
j=β+δ+φ
k=γ+ε+φ

D(n;α, β, γ, δ, ε, φ).

Clearly

(3.6)
∑
i,j,k,n

C(n; i, j, k)aibjckqn =

∞∑
i,j,k

aibjckqTi+Tj+Tk

(q)i(q)j(q)k
= (−aq)∞(−bq)∞(−cq)∞.

It turns out that

(3.7)
∑
n

D(n;α, β, γ, δ, ε, φ)qn =
qTs+Tδ+Tε+Tφ−1(1− qα(1− qφ))

(q)α(q)β(q)γ(q)δ(q)ε(q)φ
.

The proof of (3.7) in [8] is quite involved and goes by induction on s = α+β+γ+ δ+
ε+φ, the number of parts of the Type-1 partitions, and also appeals to minimal partitions
whose generating functions are given by multinomial coefficients. Instead of giving the
details of the derivation of (3.7) here, we shall in the next section, use the same ideas to
derive a similar identity for a three parameter generalization of Theorem A.

Indeed the proof of (3.7) is one of the main aspects of [8]. The second main feature
in [8] is the proof of the key identity (1.3) which relies on the Watson’s q analogue 8φ7
of Whipple’s transformation and the 6ψ6 summation of Bailey. For the proof of (1.3), we
refer the reader to [8].

4. Two infinite hierarchies from Schur’s theorem

Why is it that Göllnitz’ Theorem G is so much more complicated to prove than Schur’s
Theorem S. The reason is that in the case of Schur’s theorem, the method of weighted
words shows that one starts with two primary colors in the product, and in the series one
considers the complete alphabet of colors generated by the expansion, namely a, b, and ab.
In contrast, in the case of Göllnitz’ theorem, we start with three primary colors a, b, c in
the product, but in its series expansion, we do not consider the complete alphabet of colors
generated by a, b, c, because we consider only the secondary colors ab, ac, bc and not the
ternary color abc. Thus we are dealing with an incomplete alphabet of colors and this is
what causes the significant increase in depth and difficulty.

Extending the ideas in his 1967 proof of Schur’s theorem [11], Andrews [12], [13] soon
after obtained two hierarchies of partition theorems from Schur’s theorem making use of
the completeness of the alphabets. We now describe his results:
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For a given integer r ≥ 2, let a1, a2, .., ar be r distinct positive integers such that

(4.1)

k−1∑
i=1

ai < ak, 1 ≤ k ≤ r.

Condition (4.1) ensures that 2r − 1 sums
∑
εiai, where εi = 0 or 1, not all εi = 0, are all

distinct. Let these sums in increasing order be denoted by α1, α2, . . . , α2r−1.
Next let N ≥

∑r
i=1 ai ≥ 2r − 1 be a modulus, and AN denote the set of all positive

integers congruent to some ai(mod N). Similarly, letA′N denote the set of all positive
integers congruent to some αi(mod N) Also let βN (m) denote the least positive residue of
m(mod N). Finally, if m = αj for some j, let φ(m) denote the number of terms appearing
in the defining sum of m and ψ(m) the smallest ai appearing in this sum. Then the first
general theorem of Andrews [12] is:

Theorem A1: Let C∗(AN ;n) denote the number of partitions of n into distinct parts
taken from AN .

Let D∗(A′N ;n) denote the number of partitions of n into parts b1, b2, ..., bν from A′N
such that

(4.2) bi − bi+1 ≥ Nφ(βN (bi+1)) + ψ(βN (bi+1))− βN (bi+1).

Then
C∗(AN ;n) = D∗(A′N ;n).

To describe the second general theorem of Andrews (1969), let ai, αi and N be as
above. Now let −AN denote the set of all positive integers congruent to some −ai(mod N),
and −A′N the set of all positive integers congruent to some −αi(mod N). The quantities
βN (m), φ(m), ψ(m) are also as above. We then have (Andrews [13])

Theorem A2: Let C(−AN ;n) denote the number of partitions of n into distinct parts
taken from −AN .

Let D(−A′N ;n) denote the number of partitions of n into parts b1, b2, ..., bν , taken from
−A′N such that

(4.3) bi − bi+1 ≥ Nφ(βN (−bi)) + ψ(βN (−bi))− βN (−bi)

and also

(4.4) bν ≥ N(φ(βN (−bs)− 1)).

Then
C(−AN ;n) = D(−A′N ;n).

Theorems A1 and A2 may be viewed as duals by comparing the functions C and C∗,
but there are two essential differences between them. One is that the gap conditions for
bi − bi+1 in (4.2) are given in terms of bi+1, whereas in (4.3) they are given in terms of
bi. Also, Theorem A2 has condition (4.4) on the smallest part bν , while there is no such
condition in Theorem A1.
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When r = 2, a1 = 1, a2 = 2, N = 3 = 2r − 1, Theorems A1 and A2 both become
Theorem S. Thus the two hierarchies emanate from Theorem S, and it is only when r = 2
that the hierarchies coincide. Thus Theorem S is its own dual. Conditions (4.2) and (7.3)
can be understood better by classifying bi+1 (in Theorem A1) and bi (in Theorem A2) in
terms of their residue classes (mod N). In particular, with r = 3, a1 = 1, a2, a3 = 4 and
N = 7 = 23 − 1, Theorems A1 and A2 yield the following corollaries.

Corollary 1: Let C∗(n) denote the number of partitions of n into distinct parts ≡ 1, 2
or 4 (mod 7).

Let D∗(n) denote the number of partitions of n in the form b1 + b2 + ..., bν such that
bi − bi+1 ≥ 7, 7, 12, 7, 10, 10 or 15 if bi+1 ≡ 1, 2, 3, 4, 5, 6 or 7(mod 7). Then

C∗(n) = D∗(n).

Corollary 2: Let C(n) denote the number of partitions of n into distinct parts ≡ 3, 5
or 6 (mod 7).

Let D(n) denote the number of partitions of n in the form b1 + b2 + ...+ bν such that
bi − bi+1 ≥ 10, 10, 7, 12, 7, 7 or 15 if bi ≡ 8, 9, 3, 11, 5, 6 or 14 (mod 7) and bν 6= 1, 2, 4 or 7.
Then

C(n) = D(n).

Andrews’ proofs of Theorems A1 and A2 are extensions of his proof [11] of Theorem
S and not as difficult as the proof Göllnitz’ theorem.

It is to be noted that the residue classes 2, 4, 5 (mod 6) in Theorem G could be viewed
as −4,−2,−1 (mod 6), and so Theorem G is akin to Corollary 2. Similarly the residue
classes 1, 2, 4 (mod 6) in Theorem A make Theorem A akin to Corollary 1.

Although similar in appearance, Theorems A1 and A2 are combinatorially very differ-
ent. It was noticed by Andrews and Olsson [18], that Theorem A1 could be reformulated
in a more convenient form, and this was exploited by Bessenrodt [20] to provide a nice
combinatorial proof by using N -modular Ferrers graphs. Such an approach did not work
for Theorem A2.

Alladi and Gordon observed (see Theorem 15 of [2] for a discussion of this) that the two
Andrews hierarchies could be combined into a single infinite chain of partition theorems
by considering a method of weighted words approach in the study of the product

(4.5) (−z1q)∞(−z2q)∞...(−zrq)∞.

Theorem A1 would emerge from this by using the transformations

(4.6)

{
(dilation) q 7→ qN ,

(translations )zt 7→ ztq
at−N ,

Theorem A2 would emerge using the same dilation as in (4.6) but with the translations
zt 7→ ztq

at instead. Subsequently, Corteel and Lovejoy [21] provided a combinatorial proof
of Theorem 15 of [2] and other results by an iteration of the bijective correspondence in
the Alladi-Gordon [9] combinatorial proof of the generalization of Schur’s theorem.

12



Although the method of weighted words provides a “unifying approach” to the two
hierarchies as pointed out in [2], Gordon had told Alladi in 1994 that if one were to directly
approach Theorem A1 by the method of weighted words, it is more convenient to have
the symbols representing the colored integers starting at Level 0 instead of at Level 1. For
Theorem A2, one would use the symbols representing the colored integers starting at Level
1. This is because, if the primary colors start at Level 1, then the secondary colors start
only at Level 2, the ternary from Level 3, and so on. This corresponds to the lower bound
given by (4.4) in Theorem A2. On the other hand, no such lower bound condition on the
parts is needed in Theorem A1, and so it is best to start with primary colors from Level
0, so that all colors start at Level 0. Since our new companion Theorem A corresponds to
Corollary 1 of Theorem A1 as noted above, we will construct the key identity for Theorem
A in the next section by starting the colored integers (parts) from Level 0, instead of from
Level 1.

5. Construction of the key identity for Theorem A

As before, we will consider integers in six colors, three of which are primary colors,
namely a, b, c, and three are secondary colors ab, ac, bc. As before, we will let an denote
the integer n in color a, with similar interpretation for bn, ..., bcn. The main difference here
is that all integers n ≥ 0 will occur in all six colors.

For the partitions enumerated by D∗(n) in Theorem A, there is the unusual condition
that 6+1 could occur in the partition. This could be replaced by the equivalent condition
that if in a partition π counted by D∗(n), we have 7 as the smallest part, then instead of
replacing 7 by 6+1, we replace it by 7+0. In other words, a partition π enumerated by
D∗(n) with smallest part 7, has a mate which a partition π0 with 7 replaced by 7+0. The
partition π0 is not an ordinary partition because it has 0 as a part; it is a special partition
which will replace the the corresponding partition having 6+1 as the two smallest parts.

The ordering of the colored integers that we choose is

(5.1) bc−1 < a0 < b0 < ab0 < c0 < ac0 < bc0 < a1 < b1 < ab1 < c1 < ac1 < bc0 < ...

Using certain partitions called Type 1* partitions defined below which are formed by
symbols from (5.1), we will determine their generating function as a series which has the
product representation (see (5.27) below)

(5.2)

∞∏
m=0

(1 + aqm)(1 + bqm)(1 + cqm).

A three parameter refinement of the generating function ofD∗(n) emerges from the product
in (5.2) by the substitutions

(5.3) (dilation) q 7→ q6, and (translations) a 7→ aq, b 7→ bq2, c 7→ cq4.

Under the substitutions in (5.3), the symbols in (5.1) become

(5.4)

{
am 7→ 6m+ 1, bm 7→ 6m+ 2, cm 7→ 6m+ 4,

abm 7→ 6m+ 3, acm 7→ 6m+ 5, bcm 7→ 6m+ 6,
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and so the ordering in (5.1) becomes

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < 11 < 12 < ...,

the natural ordering among the non-negative integers. This is the reason for choosing the
ordering in (5.1). Note that bc−1 7→ 0 under these substitutions.

For a given level m (subscript), the ordering of the colors is

(5.5) a < b < ab < c < ac < bc.

Given a pair of colors, we will use (5.5) to determine which is of higher order and which
is of lower order. With this notion of order, the gap conditions governing D∗(n) translate
to Type 1* partitions which are partitions (words) whose parts are the symbols in (5.1)
satisfying the following conditions:
(5.6)

parts are ≥ 0, and the gap between them is ≥ 1,with strict inequality if either

the larger part is of lower order or consecutive parts are of same secondary color,

and if the smallest part is a1, then it can be replaced by a1 + bc−1.

NOTE: In the undilated case, the replacement of a1 by a1 + bc−1 yields a special
partition of an integer one smaller than the original. In the dilated case of D∗(n), the
replacement of 7 by 7+0 yields a special partition of the same integer. If we had chosen
to retain 6+1 as the replacement of 7, then in the undilated case, we would have bc0 + a0
as the replacement of a1, and this too would have yielded a partition of an integer one
smaller than the original. We prefer the replacement by a1 + bc−1 because this satisfies
the same gap condition as the other Type 1* partitions do.

Notation and conventions: Given a partition π, we denote by ν(π) the number
of parts of π. The number of parts of π in a given color will be denoted by a subscript,
such as νa(π). The least part of π is denoted by `(π). Also σ(π) is the sum of the parts
(subscripts of the symbols), namely the integer being partitioned. By a minimal partition
we mean a partition for which σ(π) is minimal for a specified ordering of the colors. For
example, among the partitions whose parts occur in colors

(5.7) a (ab) b c c b (ac) c

the minimal partition π is

(5.8) π : a10 + ab8 + b7 + c5 + c4 + b3 + ac1 + c0,

and for this minimal partition, σ(π) = 31. Sometimes, as in (5.7), for the sake of clarity,
we may put parenthesis around the secondary colors. Also, occasionally, for convenience,
we may write the parts of a minimal partition in ascending order instead of the standard
descending order for partitions. This will be indicated suitably.

We will also be using the q-multinomial coefficient of order 6, namely

(5.9)

[
n1 + n2 + n3 + n4 + n5 + n6

n1, n2, n3, n4, n5, n6

]
:=

(q)n1+n2+n3+n4+n5+n6

(q)n1(q)n2(q)n3(q)n4(q)n5(q)n6

.
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Since the n6 in the bottom row of the q-multinomial coefficient on the left in (5.9) is super-
fluous, most authors omit highlighting it in the notation of the q-multinomial coefficient.
But it is convenient and useful to display all six integers ni in the second row of the multi-
nomial coefficient as we shall see in the sequel. With these notations and conventions, we
are ready to derive the key identity for Theorem A.

The main idea in our derivation of the key identity (as it was in [8]) is that the
generating function of all partitions satisfying certain conditions can be obtained from the
minimal partition satisfying those conditions. For example, the generating function of all
partitions whose colored parts are in the order as specified by (5.7) is

qσ(π)

(q)ν(π)
=

q38

(q)8
,

where π is the minimal partition as in (5.8).
In what follows, we will typically consider a Type 1* partition π with

(5.10) νa(π) = α, νb(π) = β, νc(π) = γ, νab(π) = δ, νac(π) = ε, and νbc(π) = φ.

With the number of parts in different colors as specified by (5.10), we let

(5.11) s = α+ β + γ + δ + ε+ φ.

We now consider the generating function H(α, β, γ, δ, ε, φ) of all minimal Type 1*
partitions excluding the special partitions that have the number of colored parts as specified
by (5.10). We claim that

(5.12) H = H(α, β, γ, δ, ε, φ) = qTs−1+Tδ−1+Tε−1+Tφ−1

[
s

α, β, γ, δ, ε, φ

]
.

To establish (5.12), we consider the generating functions Ha = Ha(α, β, ..., φ), Hb, ...,
Hbc of all minimal partitions counted by H, but with smallest part a0, b0, ..., bc0 respec-
tively. Clearly

(5.13) Ha +Hb +Hab +Hc +Hac +Hbc = H.

We call a generating functions of such minimal partitions with a specified smallest part as
a local generating function. In (5.13), the local generating functions on the left have been
listed according to the order of the colors at each level as given by (5.5), and this will be
useful in their computation which we take up now.

The local generating functions are given by:
Lemma: Let s be as in (5.11) and σ = Ts−1 + Tδ−1 + Tε−1 + Tφ−1. Then

(5.14.a) Ha(α, β, γ, δ, ε, φ) = qσ
[

s− 1
α− 1, β, γ, δ, ε, φ

]
15



(5.14.b) Hb(α, β, γ, δ, ε, φ) = qσ+α
[

s− 1
α, β − 1, γ, δ, ε, φ

]

(5.14.ab) Hab(α, β, γ, δ, ε, φ) = qσ+α+β
[

s− 1
α, β, γ, δ − 1, ε, φ

]

(5.14.c) Hc(α, β, γ, δ, ε, φ) = qσ+α+β+δ
[

s− 1
α, β, γ − 1, δ, ε, φ

]

(5.14.ac) Hac(α, β, γ, δ, ε, φ) = qσ+α+β+δ+γ
[

s− 1
α, β, γ, δ, ε− 1, φ

]

(5.14.bc) Hbc(α, β, γ, δ, ε, φ) = qσ+α+β+δ+γ+ε
[

s− 1
α, β, γ, δ, ε, φ− 1

]
.

The claim (5.12) clearly follows from the Lemma and (5.13) because of the well known
recurrence for the q multinomial coefficients given by

(5.15)

[
n1 + n2 + · · ·+ nt
n1, n2, · · · , nt

]
=

[
n1 + n2 + · · ·+ nt − 1
n1 − 1, n2, n3, · · · , nt

]
+ qn1

[
n1 + n2 + · · ·+ nt − 1
n1, n2 − 1, n3, · · · , nt

]
+ qn1+n2

[
n1 + n2 + · · ·+ nt − 1
n1, n2, n3 − 1, n4, · · · , nt

]
+ · · ·+ qn1+···+nt−1

[
n1 + n2 + · · ·+ nt − 1
n1, n2, · · · , nt−1, nt − 1

]
in the case t = 6 with

(5.16) n1 = α, n2 = β, n3 = δ, n4 = γ, n5 = ε, n6 = φ

which means s = n1 + n2 + ...+ n6.
So we now focus our attention on the Lemma which can be proved in two ways.
First proof of the Lemma: We proceed by induction on s following the method in

[8]. For this we note that the Lemma is valid when s = 0, 1. For s ≥ 2, to derive (5.14a),
we classify the minimal partitions enumerated by Ha in six possible cases according to the
smallest two parts and apply the induction hypothesis.

Case (i): π ends with a1 + a0,
For the minimal partitions π ending in a1 + a0, if we delete a0, we get a partition π′

into s−1 parts with νa(π′) = α−1, but where each part is one above what one would have
in a minimal partition enumerated by Ha(α− 1, β, γ, δ, ε, φ). By the induction hypothesis
the generating function of the partitions in Case (i) is

(5.17) qTs−2+Tδ−1+Tε−1+Tφ−1+s−1
[

s− 2
α− 2, β, γ, δ, ε, φ

]
= qσ

[
s− 2

α− 2, β, γ, δ, ε, φ

]
.
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Case (ii): π ends with b1 + a0.
Delete a0 from π to get a partition enumerated by Hb(α−1, β, γ, δ, ε, φ), with 1 added

to each part. So by the induction hypothesis, the generating function for Case (ii) is
(5.18)

qTs−2+Tδ−1+Tε−1+Tφ−1+s−1+α−1
[

s− 2
α− 1, β − 1, γ, δ, ε, φ

]
= qσ+α−1

[
s− 2

α− 1, β − 1, γ, δ, ε, φ

]
.

Case (iii): π ends with ab1 + a0.
Deleting a0 from π, we have a partition π′ enumerated by Hab(α− 1, β, γ, δ, ε, φ) with

each part larger by 1. So using (5.14ab) with α replaced by α−1, we see that the generating
function for Case (iii) is

qTs−2+Tδ−1+Tε−1+Tφ−1+s−1+α−1+β
[

s− 2
α− 1, β, γ, δ − 1, ε, φ

]

(5.19) = qσ+α−1+β
[

s− 2
α− 1, β, γ, δ − 1, ε, φ

]
.

Case (iv): π ends with c1 + a0.
As before we delete a0 from π to get a partition enumerated by Hc(α− 1, β, γ, δ, ε, φ)

with each of its s− 1 parts larger by 1. So using (5.14c) with α − 1 in place of α, we see
that the generating function for Case (iv) is

qTs−2+Tδ−1+Tε−1+Tφ−1+s−1+α−1+β+δ
[

s− 2
α− 1, β, γ − 1, δ, ε, φ

]

(5.20) = qσ+α−1+β+δ
[

s− 2
α− 1, β, γ − 1, δ, ε, φ

]
.

Case (v): π ends with ac1 + a0.
By deleting a0 from π, we have a partition counted by Hac(α − 1, β, γ, δ, ε, φ) with

each of its s− 1 parts larger by 1. Thus from (5.14ac) with α− 1 in place of α, we see that
the generating function for Case (v) is

qTs−2+Tδ−1+Tε−1+Tφ−1+s−1+α−1+β+δ+γ
[

s− 2
α− 1, β, γ, δ, ε− 1, φ

]

(5.21) = qσ+α−1+β+δ+γ
[

s− 2
α− 1, β, γ − 1, δ, ε− 1, φ

]
.
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Case (vi): π ends with bc1 + a0
Once again, deleting a0 from π, we get a partition counted by Hbc(α− 1, β, γ, δ, ε, φ)

with each of its s − 1 parts larger by 1. So (5.14bc) with α − 1 in place of α gives the
generating function for Case (vi) as

qTs−2+Tδ−1+Tε−1+Tφ−1+s−1+α−1+β+δ+γ+ε
[

s− 2
α− 1, β, γ, δ, ε, φ− 1

]

(5.22) = qσ+α−1+β+δ+γ+ε
[

s− 2
α− 1, β, γ − 1, δ, ε, φ− 1

]
.

Thus by adding the generating functions on the right in (5.17) - (5.22), and using
(5.15) with

t = 6, n1 = α, n2 = β, n3 = δ, n4 = γ, n5 = ε, n6 = φ

we get (5.14a).
The proofs of (5.14b) - (5.14bc) are similar and so we omit them. We just point out

here that each of these is mildly more complex. In the case of (5.14a), since a0 is the
smallest symbol, the second smallest parts all came from Level 1. In the case of (5.14b), if
the second smallest part is in color a, then the partition π will end with a2 + b0. Thus by
deleting b0 we would end up with a partition enumerated by Ha(α, β − 1, γ, δ, ε, φ) with
each part larger by 2 compared to the minimal partition. This does not affect the proof
of (5.14b) by induction on s.

Rule of cycles: To prove (5.14a), in discussing cases (i) - (vi) above, we considered
the colors of the second smallest part in the sequence as given by the ordering of colors
(5.5). To derive any of the identities in the Lemma with a smallest part in a specified color,
we would discuss the second smallest part by starting with the same color and moving
cyclically to the right. For instance, for (5.14b), we would discuss the cases involving the
second smallest part by starting with color b, followed by ab, c, ac, bc and a. This would
address the mild complexity mentioned above. This rule of cycles was noticed already in
[8].

Remark: The induction proof of the Lemma, and therefore of the claim (5.12),
worked because we were able to guess the correct formula for H. This is true for any
theorem to be proved by induction. So the question may be raised as to how we conjectured
(5.12) in the first place? The answer is that we constructed the absolutely minimal partition
first and from this deduced (5.12). This leads us to the second proof of (5.12) which we
just sketch:

Sketch of the second proof of (5.12): Given the number of parts in each of
the colors, by the absolutely minimal partition, we mean the partition π for which σ(π)
is minimal among ALL the orderings of the colors. Thus if the number of parts in the
various colors are specified as in (5.10), the absolutely minimal partition is obtained by
listing the parts in increasing order as follows: First write a with repetition α, followed by
b with repetition β, followed by ab if δ ≥ 1, followed by c with repetition γ, followed by an
ac if ε ≥ 1, followed by bc if φ ≥ 1, followed by triples ab, ac, bc, in succession, dropping
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whichever color runs out. This ordering is dictated by the gap conditions (5.6) which we
use to attach the weights to the sequence of colors listed. This will yield the absolutely
minimal partition π with σ(π) = σ.

Once this absolutely minimal partition is constructed, the collection of ALL minimal
partitions is obtained by permuting the colors of the absolutely minimal partition. Each
non-identity permutation of the colors increases the sum of the weights. At this point
the fundamental property of the q-multinomial coefficients is invoked, namely that they
actually keep tract of these increases caused by the permutations. This then yields (5.12).
Similarly one can derive (5.14a) - (5.14bc). We omit giving further details of this proof
because they are cumbersome and also because we have given the induction proof.

Remarks: As early as 1992 when [8] was being written, Gordon told Alladi that
the way to construct the key identity via local generating functions is to compute the
absolutely minimal partitions. This is what led to the formulae for the local generating
functions in [8] and [9]. Since the induction proof worked so conveniently, the approach
via absolutely minimal partitions was not presented either in [8] or in [9] because it was
painstaking. Since this paper is dedicated to the memory of Gordon, we wish to point
out this idea of Gordon and how it helped us determine the formulae in (5.12) and in the
Lemma.

With (5.12) established, it follows that the generating function of all Type 1* partitions
excluding the special partitions is

(5.23) Σ1 :=
∑

i,j,k≥0

aibjck
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs−1+Tδ−1+Tε−1+Tφ−1

(q)α(q)β(q)γ(q)δ(q)ε(q)φ
.

Now the special partitions are those with smallest part a1, and with bc−1 added to the
partition. To get the generating function of the special partitions we proceed as follows:

Step 1: Start with all Type 1* non-special minimal partitions π with the number of
parts as specified by (5.10) and with `(π) = a0, and add one to each of the s parts of π to
get partitions π1. From (5.14a) we see that the generating function of the π1 with number
of parts as given by (5.10) is

(5.24) qs+Ts−1+Tδ−1+Tε−1+Tφ−1

[
s− 1

α− 1, β, γ, δ, ε, φ

]
Step 2: Draw the Ferrers graph of these π1, and imbed colums of lengths up to s− 1

in the graph to increase the gaps between the parts arbitrarily, but keeping the smallest
part as a1. These yield all Type 1* non-special partitions with π2 with `(π2) = a1. In
terms of generating functions, this means we divide the expression in (5.24) by (q)s−1 to
get the generating function of the π2 satisfying (5.10). We need to multiply this generating
function by aibjck and sum over all i, j, k to get the generating function of all π2 which is

(5.25)
∑
i,j,k

aibjck
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs+Tδ−1+Tε−1+Tφ−1

(q)α−1(q)β(q)γ(q)δ(q)ε(q)φ
.
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Step 3: Finally, add bc−1 as a part to all the π2 to get all the special partitions π3. This
means the expression in (5.25) is to be multiplied by bcq−1. So the generating function of
all special partitions is

(5.26) Σ2 :=
∑

i≥1,j,k≥0

aibj+1ck+1
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs+Tδ−1+Tε−1+Tφ−1−1

(q)α−1(q)β(q)γ(q)δ(q)ε(q)φ
.

Thus the key identity for Theorem A is

Σ1 + Σ2 =
∑

i,j,k≥0

aibjck
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs−1+Tδ−1+Tε−1+Tφ−1

(q)α(q)β(q)γ(q)δ(q)ε(q)φ

+
∑

i≥1,j,k≥0

aibj+1ck+1
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs+Tδ−1+Tε−1+Tφ−1−1

(q)α−1(q)β(q)γ(q)δ(q)ε(q)φ

(5.27) = (−a)∞(−b)∞(−c)∞.

Just as Theorem 1 was the combinatorial version of (1.3), the combinatorial version
of of key identity (5.27) is the following partition theorem:

Theorem 1*:
Let C∗(n; i, j, k) denote the number of vector partitions (π1;π2;π3) of n such that π1

has i non-negative distinct parts all in color a, π2 has j non-negative distinct parts all in
color b, and π3 has k non-negative distinct parts all in color c.

Let D∗(n;α, β, γ, δ, ε, φ) denote the number of Type 1* partitions of n with νa(π) = α,
νb(π) = β, . . . , and νbc(π) = φ.

Then
C∗(n; i, j, k) =

∑
i=α+δ+ε
j=β+δ+φ
k=γ+ε+φ

D∗(n;α, β, γ, δ, ε, φ).

Upon seeing (5.27), Alexander Berkovich asked what the coefficient of aibjck in the
combined series on the left of (5.27) is? To determine this, we need to replace φ by φ− 1
in Σ2. . Thus the coefficient of aibjck in (5.7) is

∑
s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs−1+Tδ−1+Tε−1+Tφ−1

(q)α(q)β(q)γ(q)δ(q)ε(q)φ

(5.28) +
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs−1+Tδ−1+Tε−1+Tφ−2−1

(q)α−1(q)β(q)γ(q)δ(q)ε(q)φ−1
.
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Note that
qTs−1+Tδ−1+Tε−1+Tφ−1

(q)α(q)β(q)γ(q)δ(q)ε(q)φ
+

qTs−1+Tδ−1+Tε−1+Tφ−2−1

(q)α−1(q)β(q)γ(q)δ(q)ε(q)φ−1
.

(5.29) =
qTs−1+Tδ−1+Tε−1+Tφ−2−1

(q)α(q)β(q)γ(q)δ(q)ε(q)φ
× {qφ + (1− qα)(1− qφ)}.

Since
qφ + (1− qα)(1− qφ) = 1− qα(1− qφ),

we see from (5.29) that the two sums in (5.27) amalgamate to yield

∑
i,j,k≥0

aibjck
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs−1+Tδ−1+Tε−1+Tφ−2−1{1− qα(1− qφ)}
(q)α(q)β(q)γ(q)δ(q)ε(q)φ

(5.30) = (−a)∞(−b)∞(−c)∞.

Observe that the subsitutions

(5.31) a 7→ aq, b 7→ bq, c 7→ cq,

converts (5.30) to (1.3) because these substitutions increase the power of q in the inner
sum in (5.30) by i+ j + k, and

i+ j + k = s+ α+ ε+ φ.

Thus the key identity for Theorem A, namely (5.27), is equivalent to (1.3) which is the
key identity for Theorem G.

Since we have shown that (5.27) is the same as (1.3), we do not prove (5.27) here, but
refer the reader to [8] for the proof of (1.3) instead. But then, in the next section, we will
provide two proofs of Theorem 1* without appeal to the key identity to demonstrate how
the proof of Theorem A extends to the proof of its three parameter refinement.

We conclude this section by stressing that Theorem 1* and Theorem 1 are combina-
torially different, as are Theorems A and G, because in showing (5.27) to be equivalent to
(1.3), we had to do the amalgamation and the subsitutions in (5.31), and these change the
underlying combinatorics. When the substitutions (5.31) are made, the order of the colors
(5.5) changes to (3.5). This change can be viewed as follows: Reverse the ordering of the
colors in (5.10) and interchange a and c. This converts (5.5) to (3.5) and vice-versa.

6. Two proofs of Theorem 1*

We will now prove Theorem 1*, not via its key identity (5.27), but directly. The first
proof is patterned along the method of Section 2.
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First proof of Theorem 1*: Let κ denote any of the six colors a, b, c, ab, ac, bc. For
n ≥ 1, we denote by dκ(m) = dκ(m; a, b, c) the polynomial in a, b, c representing the
generating function of all Type 1* partitions with parts ≤ κn−1. In this section, for the
special Type 1* partitions, we think of the smallest two parts as bc0+a0 instead of a1+bc−1.

As initial conditions, we let for all κ,

(6.1) dκ(m) = 0 if m < −1, and dκ(m) = 1 if m = 0 or 1.

For example, dab(1) = 1 + (a+ b+ ab)q0 = 1 + a+ b+ ab.
The conditions (5.6) imply that the dκ(m) satisfy the following recurrences:

(6.2.1) dbc(m) = dac(m) + bcqm−1dac(m− 1) + δm,1abc,

(6.2.2) dac(m) = dc(m) + acqm−1dc(m− 1)

(6.2.3) dc(m) = dab(m) + cqm−1dc(m− 1)

(6.2.4) dab(m) = db(m) + abqm−1db(m− 1)

(6.2.5) db(m) = da(m) + bqm−1db(m− 1)

(6.2.6) da(m) = dbc(m− 1) + aqm−1da(m− 1)

In (6.2.1), the δm,1 is the Kronecker delta, and this term corresponds to the ε(m) correction
term introduced in (2.6).

These recurrences can all be established using the definition of Type 1* partitions.
We prove only (6.2.1) since it is the only one with the correction term.

The difference
dbc(m)− dac(m)

is the generating function of all Type 1* partitions with largest part (bc)m−1. After
subtracting (bc)m−1 from such partitions, we are left with Type 1* partitions with largest
part ≤ (ac)m−2 because (bc)m−2 cannot be a part when (bc)m−1 is present. This accounts
for the term bcqm−1dac(m− 1) on the right in (5.2.1). However, when m = 1, the special
partition bc0 + a0 is counted by dbc(1), but will not be present on the right unless the
δm,1abc is added to the right hand side of (6.2.1). We need this correction term just at the
start, that is when m = 1. The proofs of (6.2.2) - (6.2.5) are similar.

Our main objective is to prove
Theorem 2: For all κ,

lim
m→∞

dκ(m) = (−a)∞(−b)∞(−c)∞.
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We will deduce Theorem 2 from
Lemma 2: For n ≥ 2

dbc(m) + abqmdbc(m− 1) = (1 + a)(1 + b)(1 + c)dc(m− 1; aq, bq, cq).

Iteration of the q-difference equation in Lemma 2 directly yields Theorem 2. So we
foucus our attention on the proof of Lemma 2.

Combining (6.2.1) and (6.2.2) we get

(6.3) dbc(m) = dc(m) + qm−1(ac+ bc)dc(m− 1) + abc2q2m−3dc(m− 2).

Next rewrite (6.2.6) as

(6.4) dbc(m− 1) = da(m)− aqm−1da(m− 1).

Then by (6.2.5) and (6.4) we get

(6.5) dbc(m− 1) = db(m)− (a+ b)qm−1db(m− 1) + abq2m−3db(m− 2).

Similarly, if we eliminate dab(m) using (6.2.3) and (6.2.4), we find that

(6.6) S1(m) = 0,

where

(6.7) S1(m) = dc(m)− cqm−1dc(m− 1)− db(m)− abqm−1db(m− 1).

Next by (6.2.1) and (6.2.2)

(6.8) dbc(m− 1) = dc(m− 1) + (ac+ bc)qm−2dc(m− 2) + acqm−3dc(m− 3).

Hence by (6.5) and (6.8) we get

(6.9) S2(m) = 0,

where
S2(m) = dc(m− 1) + (ac+ bc)qm−2dc(m− 2) + abc2q2m−5dc(m− 3)

(6.10) −db(m) + (a+ b)qm−1db(m− 1)− abq2m−3db(m− 2).

What we want is a linear recurrence for the dc(m). This is pure linear algebra problem.
To this end, we regard the six expressions

Sj(m− i) = 0, for 0 ≤ i ≤ 2, 1 ≤ j ≤ 2,
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as linear equations in the variables dc(m), db(m), db(m − 1), db(m − 2), db(m − 3), and
db(m − 4). Solving this system will yield dc(m) as a linear combination of dc(m − i), for
1 ≤ i ≤ 4. The result is that for m ≥ 5,

(6.11) J(m) := F (m; a, b, c, dc(m), dc(m− 1), dc(m− 2), dc(m− 3), dc(m− 4)) = 0,

where

(6.12) F (m; a, b, c,X, Y, Z,W, V ) = X − (1 + qm−1(a+ b+ c))Y − q3m−8a2b2c2V

−{qm−2(abq+ac+bc)−q2m−3(ab+ac+bc)}Z−{q3m−6abc+q2m−5(a2bcq+ab2cq+abc2)}W.

Clearly by (6.12), the right hand side of the expression in Lemma 2 satisfies

(6.13) F (m− 1; aq, bq, cq, d∗c(m− 1), d∗c(m− 2), d∗c(m− 3), d∗c(m− 4), d∗c(m− 5)) = 0,

where

d∗c(m) = dc(m; aq, bq, cq).

Setting G(m) for the left hand side of Lemma 2, note that

(6.14) G(m) := dbc(m) + abqmdbc(m− 1)

= dc(m) + (ac+ bc)qm−1dc(m− 1) + abc2q2m−3dc(m− 2)

+abqn(dc(m− 1) + (ac+ bc)qm−2dc(m− 2) + abc2q2m−5dc(m− 3))

= dc(m) + (abq + ac+ bc)qm−1dc(m− 1)

+(abc2 + a2bcq + ab2cq)q2m−3dc(m− 2) + a2b2c2q3m−5dc(m− 3).

Thus

(6.15) F (m− 1, aq, bq, cq,G(m), G(m− 1), G(m− 2), G(m− 3), G(m− 4))

= J(m) + qm−1(bc+ ac+ abq)J(m− 1)

+q2m−3(abc2 + ab2cq + a2bcq)J(m− 2) + q3m−5a2b2c2J(m− 3) = 0,

by (6.11) provided m ≥ 8.
On comparing (6.13) and (6.15), we see that both sides of Lemma 2 satisfy identical

fourth order recurrences provided n ≥ 8. The truth of Lemma 2 for 2 ≤ m < 8 was
checked using Macsyma. This completes the proof of Lemma 2 which implies Theorem 2
(and Theorem 1*).

Second proof of Theorem 2: This proof relies on the proof of Theorem G given
in Andrews [14]. We will rephrase Theorem 2’ of [14] in a manner that will make it more
easily applicable here.
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First we define

(6.16) λm =
m∑
r=0

m−r∑
s=0

m−r−s∑
t=0

[
m

r, s, t,m− r − s− t

]
arbsctqTr−1+Ts−1+Tt−1 ,

where

(6.17)

[
m

r, s, t,m− r − s− t

]
=

(q)m
(q)r(q)s(q)t(q)m−r−s−t

.

The q-multinomial coefficients of order 4 in (6.17) can be written as a product of three
q-binomial coefficents, namely

(6.18)

[
m

r, s, t,m− r − s− t

]
=

[
m

r,m− r

] [
m− r

s,m− r − s

] [
m− r − s

t,m− r − s− t

]
,

where

(6.19)

[
i
j

]
=

[
i

j, i− j

]
=

(q)i
(q)j(q)i−j

.

We note that
(6.20)

∞∑
m=0

λmz
m

(q)m
=

∑
m,r,s,t≥0

zm+r+s+tarbsctqTr−1+Ts−1+Tt−1

(q)r(q)s(q)t(q)m
=

(−az)∞(−bz)∞(−cz)∞
(z)∞

.

It follows from (6.16) that

(6.21) lim
m→∞

λm = (−a)∞(−b)∞(−c)∞.

We now restate Theorem 2’ of [14] in the form of Lemma 3 below, but to keep things
succinct, we let

σ1 = a+ b+ c, σ2 = ab+ ac+ bc, and σ3 = abc.

Lemma 3: Let D−1 = 0, D0 = 1, D1 = 1 + σ1, and

D2 = 1 + σ1(1 + q) + σ1
2q + σ2(1− q) + σ3,

and for m ≥ 3

(6.22) Dm = (1 + σ1q
m−1)Dm−1 + σ2q

m−2(1− qm−1)Dm−2

+σ3q
2m−5(σ1 + qm−1)Dm−3 + σ3

2q3m−9Dm−4.
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Then

(6.23) Dm =
∑

0≤2s≤m

qms−s(s+3)/2σ3
2

[
m− s
s

]
λm−2s.

Remark: We note by (6.21) and (6.23) that

(6.24) lim
m→∞

Dm = lim
m→∞

λm = (−a)∞(−b)∞(−c)∞.

Now for m ≥ 2 we define six new polynomial sequences

(6.25.1) δbc(m) = Dm + qm−1σ2Dm−1 + σ1σ3q
2m−3Dm−2 + σ3

2q3m−6Dm−3,

(6.25.2) δac(m) = Dm + (ab+ ac)qm−1Dm−1 + aσ3q
2m−3Dm−2,

(6.25.3) δc(m) = Dm + abqm−1Dm−1,

(6.25.4) δab(m) = Dm + (ab− c)qm−1Dm−1 − σ3q2m−3Dm−2,

(6.25.5) δb(m) = Dm − cqm−1Dm−1,

(6.25.6) δa(m) = Dm − (b+ c)qm−1Dm−1 + bcq2m−3Dm−2.

Next we want to show that the δκ(m) for each color κ will satify the same recurrence
as dκ(m). Observe that for n ≥ 4

δbc(m) = δac(m) + bcqm−1(Dm−1 + (ab+ ac)qm−2Dm−2) + σ3q
2m−5Dm−3

(6.26.1) = δac(m) + bcqm−1δac(m− 1).

δac(m) = δc(m) + acqm−1(Dm−1 + abqm−2Dm−2)

(6.26.2) = δc(m) + acqm−1δc(m− 1).

δc(m) = δab(m) + acqm−1(Dm−1 + abqm−2Dm−2).

(6.26.3) = δab(m) + acqm−1δc(m− 1).

δab(m) = δb(m) + abqm−1(Dm−1 − cqm−2Dm−2)
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(6.26.4) = δb(m) + abqm−1δb(m− 1).

δb(m) = δa(m) + bqm−1(Dm−1 − cqm−2Dm−2)

(6.26.5) = δa(m) + bqm−1δb(m− 1).

Finally,

δa(m)− δbc(m− 1)− aqm−1δa(m− 1)

= Dm − (1 + σ1q
m−1)Dm−1 − σ2qm−2(1− qm−1)Dm−2

(6.26.6) −σ3q2m−5(σ1 + qm−1)Dm−3 − σ32q3m−9Dm−4 = 0,

by (6.22).
The recurrences (6.26.1)-(6.26.6) are the same as (6.2.1)-(6.2.6) for n ≥ 4. The equal-

ity

dκ(3) = δκ(3),

for all κ, can be checked using any computer algebra system (in this case Macsyma was
used). Thus we conclude that

(6.27) dκ(m) = δκ(m), for m ≥ 3.

In conclusion we have

lim
m→∞

dκ(m) = lim
m→∞

δκ(m) = lim
m→∞

Dm = (−a)∞(−b)∞(−c)∞,

which is Theorem 2.

7. Key identities and companions

By a key identity for a partition theorem, we mean a q-hypergeometric identity with
one or more parameters, such that under a transformations q 7→ qM and certain choices of
the parameter(s), the partition theorem emerges. The same key identity could be used to
generate a companion. For example, the key identity

(7.1) 1 +
∞∑
k=0

(aq)k−1(1− aq2k)(−1)ka2kqk(5k−1)/2

(q)k
= (aq)∞

∞∑
k=0

akqk
2

(q)k
,

may be viewed as a key identity for the two Rogers-Ramanujan identities, because they
emerge from (7.1) by the choices a = 1 and a = q. It is only for these two choices of a
the left hand side of (7.1) has a product representation. The key identities discussed in
this paper are those, which unlike (7.1), have product representations for all values of the
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parameters. The two Little Göllnitz theorems, which may be viewed as duals, emerge from
the Lebesgue identity

(7.2)
∞∑
k=0

(−bq)kqk(k+1)/2

(q)k
= (−bq2; q2)∞(−q)∞,

under the dilation q 7→ q2, and the translations b 7→ bq, or b 7→ bq−1. The Lebesgue
identity (7.2), enjoys a product representation for all values of b.

The reformulations of Theorem G obtained in [1] and [3] led to key identities (see
[5], [6]) that were different from (1.3) and simpler in structure. In contrast, we have
demonstrated here that the key identity for Theorem A, namely (5.27), is equivalent to
(1.3), the key identity for Theorem G. But the companion Theorem A is combinatorially
very different from Theorem G, just as Theorems A1 and A2 for r ≥ 3 are combinatorially
different.

Alladi-Andrews-Berkovich [7] obtained a deep four parameter key identity extending
(1.3). From this key identity, under the transformations

(dilation) q 7→ q15, and (translations) a 7→ aq−8, b 7→ bq−4, c 7→ cq−2, d 7→ dq−1,

they stated a mod 15 partition theorem analogous to, but deeper than, Theorem A2 in the
case r = 4. In view of Theorem A, it might be worthwhile to study the partition theorem
that emerges from the four parameter key identity in [7] by first replacing a by aq−1, b by
bq−1, c by cq−1, and d by dq−1, to go from a Level 1 start to a Level 0 start, and then
applying the transformations

(dilation) q 7→ q15, and (translations) a 7→ aq1, b 7→ bq2, c 7→ cq4, d 7→ dq8.
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