
A MULTI-DIMENSIONAL EXTENSION

OF SYLVESTER’S IDENTITY

Krishnaswami Alladi*

Abstract: We obtain by combinatorial means, a multi-dimensional exten-
sion of Sylvester’s famous identity of 1882 that generalized Euler’s Pentagonal
Numbers Theorem. We also provide a purely q-hypergeometric proof.

1. Introduction

Although partitions are combinatorial objects, Euler who founded the theory
of partitions in the mid-eighteenth century, did not use combinatorial methods
but preferred formal power series and generating function techniques. It was
Sylvester in the late nineteenth century who first exploited combinatorial meth-
ods to study partitions and extended many results of Euler. An important result
of Sylvester in his classic paper [10] of 1882 is:

(−aq)∞ = 1 +
∞∑
k=1

akq(3k
2−k)/2(−aq)k−1(1 + aq2k)

(q)k
. (1.1)

Here and in what follows we have used the standard notation

(a)n = (a; q)n =

n−1∏
j=0

(1−aqj), and (a)∞ = lim
n→∞

(a)n when |q| < 1. (1.2)

The case a = −1 in (1.1) yields Euler’s famous Pentagonal Numbers Theorem:

(q)∞ =

∞∑
k=−∞

(−1)kq(3k
2−k)/2. (1.3)

The product on the left in (1.1) is the generating function of partitions into
distinct parts. Sylvester proved (1.1) combinatorially by analyzing the Ferrers
graphs of partitions into distinct parts in terms of their Durfee squares. He then
posed a challenge to find a purely q-series proof. Such a proof was found by
Cayley. This story is nicely described by Andrews [7].

Our goal here is to analyze partitions into parts occurring in r colors a1, a2,
.., ar, where parts of the same color do not repeat, and to prove identity (4.8)
below which is an expansion for the product

(−a1q)∞(−a2q)∞...(−arq)∞, (1.4)

which is the generating function for the colored partitions. We prove the multi-
dimensional extension (4.8) of (1.1) combinatorially in section 5 by following and
extending Sylvester’s method and studying the Ferrers graphs of these colored
partitions via their Durfee squares. Although Sylvester’s identity is classical,
this multi-dimensional extension is new.

——————————————–
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In the two dimensional case, our extension of (1.1) is∑
k≥0

qk
2

(−aq)k(−bq)k
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j
.
(1 + aqk+i + bqk+i+j + abq2k+i+j)

(1 + aqk)(1 + bqk)

= (−aq)∞(−bq)∞, (1.5)

Even though i+ j = k, we have deliberately written k + i+ j and 2k + i+ j in
(1.5) for the purpose of the r-dimensional extension below. We first provide the
combinatorial proof of (1.5) in section 2 which will help in a clearer understand-
ing of the combinatorial proof of the r-dimensional identity (4.8) presented in
Section 5. Upon seeing (1.5), Andrews [8] provided a purely q-series proof of
it (see section 3) by extending Cayley’s proof of (1.1). We are able to extend
Andrews’ method to establish (4.8) by purely q-series means (see Section 6).

2. The two dimensional Sylvester identity: combinatorial derivation

We view
(−aq)∞(−bq)∞ (2.1)

as the generating functions for partitions occurring in two colors a and b, with
parts of the same color not repeating. We use a, b to denote the colors as well as
the parameters that keep track of the number of parts in the colors. We assume
a < b as the order among the colors so as to discuss partiitions into parts in the
two colors. When we draw the Ferrers graphs of these two colored partitions, we
color only the last node on the right of each row as either a or b; the remaining
nodes are uncolored.

The Durfee square D in a Ferrers graph of a partition π is the largest square
of nodes starting from the top left hand corner of the graph. The portion to
the right of the Durfee square represents a partition which we denote by πr.
Similarly, the portion below the Durfee square is a partition denoted by πb.

When considering Ferrers graphs of two colored partitions generated by the
product (2.1) having a k × k Durfee square D, four cases arise:

Case 1: The bottom right node in D is uncolored
Thus all nodes in D are uncolored. So the contribution of the D to the

generating function in this case is simply

qk
2

. (2.2)

The portion πb could have parts up to size k. So its generating function is

(−aq)k(−bq)k. (2.3)

The portion πr to the right of D has exactly k parts of which i could be
in color a and j in color b with i + j = k. So the generating function of the
partitions πr is

k∑
i=0

aibk−iqTi+Tk−i

(q)i(q)k−i
=

∑
i+j=k

aibjqTi+Tj

(q)i(q)j
, (2.4)
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where Tm = m(m + 1)/2 is the m-th triangular number. Thus the generating
function for Case 1 is

qk
2

(−aq)k(−bq)k
∑
i+j=k

aibjqTi+Tj

(q)i(q)j
. (2.5)

Case 2: The bottom right node in D has color b, rest in D uncolored
In this case the contribution of D to the generating function is

bqk
2

. (2.6)

Since the bottom right node of D has color b, if the largest part of πb has
size k, then it must have color a. There is no such restriction on the colors for
the parts of πb which are less than k. Thus the generating function of πb in this
case is

(−aq)k(−bq)k−1. (2.7)

We note that πr will have exactly k − 1 parts. So its generating function is

k−1∑
i=0

aibk−i−1qTi+Tk−i−1

(q)i(q)k−i−1
(2.8)

Thus the generating function for Case 2 is

bqk
2

(−aq)k(−bq)k−1
k−1∑
i=0

aibk−i−1qTi+Tk−i−1

(q)i(q)k−i−1
,

which can be written in the form

qk
2

(−aq)k(−bq)k−1
∑

i+j=k,j≥1

aibjqTi+Tj−1

(q)i(q)j−1
. (2.9)

similar to (2.5).
Case 3: The bottom right node in D has color a, rest in D uncolored
This is similar to Case 2 with the following difference: Since a < b is the

order of the colors, the partition πb will not have a part of size k. This all parts
of πb will be ≤ k − 1. So the generating function of Case 3 will be

qk
2

(−aq)k−1(−bq)k−1
∑

i+j=k,i≥1

aibjqTi−1+Tj

(q)i−1(q)j
. (2.10)

Finally we have
Case 4: The bottom right node in D has color a, the node above it has color b,
and the rest in D uncolored
In this case the contribution of D to the generating function is

abqk
2

.
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The generating function of πb is the same as in Case 3. The main difference
is that the partition πr will now have exactly k − 2 parts. So the generating
function of Case 4 is

abqk
2

(−aq)k−1(−bq)k−1
k−2∑
i=0

aibk−i−2qTi+Tk−i−2

(q)i(q)k−i−2
,

which can be written in the form

qk
2

(−aq)k−1(−bq)k−1
∑

i+j=k,i≥1,j≥1

aibjqTi−1+Tj−1

(q)i−1(q)j−1
. (2.11)

similar to (2.5).
We need to add the generating functions in (2.5), (2.9), (2.10), (2.11), sum

this over k and add 1 (for the null partition) to get

1 +
∑
k≥1

qk
2

(−aq)k(−bq)k
∑
i+j=k

aibjqTi+Tj

(q)i(q)j

+
∑
k≥1

qk
2

(−aq)k(−bq)k−1
∑

i+j=k,j≥1

aibjqTi+Tj−1

(q)i(q)j−1

+
∑
k≥1

qk
2

(−aq)k−1(−bq)k−1
∑

i+j=k,i≥1

aibjqTi−1+Tj

(q)i−1(q)j

+
∑
k≥1

qk
2

(−aq)k−1(−bq)k−1
∑

i+j=k,i≥1,j≥1

aibjqTi−1+Tj−1

(q)i−1(q)j−1
= 1+I+II+III+IV

(2.12)
We group the terms as follows. For fixed k ≥ 1, consider first the sum of the
terms in I and III:

qk
2

(−aq)k(−bq)k
∑
i+j=k

aibjqTi+Tj

(q)i(q)j
+qk

2

(−aq)k−1(−bq)k−1
∑

i+j=k,i≥1

aibjqTi−1+Tj

(q)i−1(q)j

= qk
2

(−aq)k−1(−bq)k−1{(1+aqk)(1+bqk)
∑
i+j=k

aibjqTi+Tj

(q)i(q)j
+

∑
i+j=k,i≥1

aibjqTi−1+Tj

(q)i−1(q)j
}.

(2.13)
Note that in (2.13) the condition i ≥ 1 is redundant because by definition
(q)−1−1 = 0. Thus the expression in (2.13) is

= qk
2

(−aq)k−1(−bq)k−1
∑
i+j=k

aibjqTi−1+Tj

(q)i(q)j
{(1 + aqk)(1 + bqk)qi + (1− qi)}

= qk
2

(−aq)k−1(−bq)k−1
∑
i+j=k

aibjqTi−1+Tj

(q)i(q)j
(1+aqk+i+bqk+i+abq2k+i). (2.14)
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Similarly, for fixed k ≥ 1, the sum of the terms in II and IV is

qk
2

(−aq)k−1(−bq)k−1
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j−1
{(1 + aqk)qi + (1− qi)}

= qk
2

(−aq)k−1(−bq)k−1
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j−1
(1 + aqk+i). (2.15)

Finally, summing the expressions in (2.14) and (2.15) we get

qk
2

(−aq)k−1(−bq)k−1
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j

×{(1 + aqk+i + bqk+jabq2k+i)qj + (1 + aqk+i)(1− qj)}

= qk
2

(−aq)k−1(−bq)k−1
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j
(1 + aqk+i + bqk+i+j + abq2k+i+j).

(2.16)
Thus summing the expression in (2.16) over k ≥ 1 and adding 1 we get

1+
∑
k≥1

qk
2

(−aq)k−1(−bq)k−1
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j
(1+aqk+i+bqk+i+j+abq2k+i+j)

= (−aq)∞(−bq)∞. (2.17)

This is equivalent to (1.5) which is written as a sum over k ≥ 0 by absorbing the
starting term 1 which corresponds to k = 0 into the summation. This proves
the two dimensional extension (1.5) of Sylvester’s identity.

Remark: Although the product in (1.5) and (2.17) is symmetric in a and
b, this symmetry is not explicitly seen in the series. There is the trivial series
expansion

(−aq)∞(−bq)∞ = (
∑
i

aiqTi

(q)i
)(
∑
j

bjqTj

(q)j
) =

∑
i,j

aibjqTi+Tj

(q)i(q)j

obtained by straightforward multiplication. But a more interesting expansion
on the product in (1.5) symmetric in a and b was obtained by Alladi-Gordon
[3] which was a generalization and refinement of Schur’s partition theorem [9].
More specifically, the symmetric key identity for the generalized Schur theorem
derived in [3] is:

(−aq)∞(−bq)∞ =
∑
i,j

aibjqTi+Tj

(q)i(q)j
=

∑
i,j

aibj
∑

i=r+t,j=s+t

qTr+s+t+Tt

(q)r(q)s(q)t
. (2.18)

Andrews observed that it is possible to write down a symmetric version of (1.5).
This is given in the next section after describing Andrews’ q-theoretic proof of
(1.5).
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3. The two dimensional Sylvester identity: q-series proof

Our derivation of the two dimensional identity combinatorially in the pre-
vious section will motivate the combinatorial derivation of the r-dimensional
version in Section 5. But before that it will be instructive to provide here An-
drews’ q-theoretic proof of (1.5) [5] which will help us extend the underlying
ideas to provide a q-theoretic proof of the r-dimensional identity ().

Andrews’ Proof: Begin by writing the series in (1.5) as∑
k≥0

qk
2

(−aq)k(−bq)k
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j
.

Y

(1 + aqk)(1 + bqk)
, (3.1)

where

Y = Y (a, b) = 1 + aqk+i + bqk+i+j + abq2k+i+j , with k = i+ j. (3.2)

Next multiply both sides of (1.5) by (1 + a)(1 + b) to rewrite it as∑
k≥0

qk
2

(−a)k(−b)k
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j
.Y = (−a)∞(−b)∞. (3.3)

Now denote the product on the right in (3.3) by P (a, b), and the sum on the
left in (3.3) by S(a, b). The product clearly satisfies the functional equation

P (a, b) = (1 + a)(1 + b)P (aq, bq).

Following Cayley’s method it will be shown below that

S(a, b) = (1 + a)(1 + b)S(aq, bq). (3.4)

From this (1.5) will follow because P and S satisfy the same initial conditions.
Now note that Y can be rewritten as

Y = qk(1 + aqk)(1 + bqk) + aqk+i(1− qj) + (1− qk)

= qk(1 + aqk)(1 + bqk) + qi(1 + aqk)(1− qj) + (1− qi) =: Z. (3.5)

Using (3.5), we may rewrite S(a, b) as

S(a, b) =
∑
k≥0

qk
2

(−a)k+1(−b)k+1

∑
i+j=k

(aq)
i
(bq)

j
qTi−1+Tj−1

(q)i(q)j

+
∑
k≥1

qk
2

(−a)k+1(−b)k
∑
i+j=k

(aq)
i
bjqTi−1+Tj−1

(q)i(q)j−1

+
∑
k≥1

qk
2

(−a)k(−b)k
∑
i+j=k

aibjqTi−1+Tj−1

(q)i−1(q)j
. (3.6)

At this stage replace k 7→ k+ 1 and j 7→ j + 1 in the second double sum on the
right in (3.6), and similarly replace k 7→ k+ 1 and i 7→ i+ 1 on the third double
sum in (3.6). Then (3.6) can be rewritten as
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S(a, b) =
∑
k≥0

qk
2

(−a)k+1(−b)k+1

∑
i+j=k

(aq)
i
(bq)

j
qTi−1+Tj−1

(q)i(q)j

+
∑
k≥0

q(k+1)2(−a)k+2(−b)k+1

∑
i+j=k

(aq)
i
(bq)

j
.bqTi−1+Tj−1

(q)i(q)j

∑
k≥0

q(k+1)2(−a)k+1(−b)k+1

∑
i+j=k

(aq)
i
.abjqTi−1+Tj−1

(q)i(q)j
. (3.7)

Finally, we may write the entire expression on the right in (3.7) as

= (1 + a)(1 + b)
∑
k≥0

qk
2

(−aq)k(−bq)k
∑
i+j=k

(aq)
i
(bq)

j
qTi−1+Tj−1

(q)i(q)j
.W, (3.8)

where
W = 1 + q2k+1(1 + aqk+1)b+ q2k+1aq−j

= 1 + bq2k+1 + abq3k+2 + aqk+i+1 = Y (aq, bq), (3.9)

with Y given by (3.2) and because i + j = k. Thus if (3.9) is combined with
(3.8), we see that the functional equation (3.4) is satisfied by S. Since P and S
satisfy the same initial conditions, this proves (1.5).

Symmetric version of (1.5): Andrews observed that instead of the bqk+i+j

term in (1.5), if we had bqk+j , then it would be symmetric in a and b, and we
would have the symmetric product (1 + aqk+i)(1 + bqk+j) in the numerator.
With this in mind, rewrite (1.5) as

∑
k≥0

qk
2

(−aq)k(−bq)k
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j

(1 + aqk+i)(1 + bqk+j)

(1 + aqk)(1 + bqk)
+

∑
k≥0

qk
2

(−aq)k(−bq)k
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j

(bqk+i+j − bqk+j)
(1 + aqk)(1 + bqk)

= (−aq)∞(−bq)∞.

(3.10)
Next note that

bqk+i+j − bqk+j = −bqk+j(1− qi). (3.11)

So with (3.11), we may rewrite (3.10) as

∑
k≥0

qk
2

(−aq)k(−bq)k
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j

(1 + aqk+i)(1 + bqk+j)

(1 + aqk)(1 + bqk)
−

∑
k≥0

qk
2

(−aq)k(−bq)k
∑
i+j=k

aibj+1qTi−1+Tj−1+k+j

(q)i−1(q)j(1 + aqk)(1 + bqk)
= (−aq)∞(−bq)∞.

(3.12)
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Note that in the second sum on the right in (3.12), only i ≥ 1 will make a
contribution because 1/(q)−1 = 0. So we replace i by i + 1 in the second sum
on the right in (3.12) to rewrite it as

∑
k≥0

qk
2

(−aq)k(−bq)k
∑
i+j=k

aibjqTi−1+Tj−1

(q)i(q)j
.
(1 + aqk+i)(1 + bqk+j)

(1 + aqk)(1 + bqk)
−

∑
k≥1

qk
2

(−aq)k(−bq)k
∑

i+j+1=k

ai+1bj+1qTi+Tj+k

(q)i(q)j(1 + aqk)(1 + bqk)
= (−aq)∞(−bq)∞.

(3.13)
which is a symmetric version of (1.5).

It would be worthwhile to see whether (1.5) (or (3.13)) is related or can be
transformed to (2.18). This is related to Problem 2 stated in Section 7.

4. The multi-dimensional identity

We actually constructed the three dimensional identity (4.1) below that ex-
tended (1.5) and saw a pattern in its structure that helped us write down the
multi-dimensional identity (4.8). To avoid repetition in the exposition, we will
only state the three dimensional identity here but will not provide the details
of the q-theoretic proof or the combinatorial derivation of it. Instead we will
straightaway provide the combinatorial derivation of the r-dimensional identity
(4.8) in Section 5, and its q-theoretic proof in Section 6.

Our three dimensional extension of Sylvester’s identity is

∑
`.ge0

q`
2

(−aq)`(−bq)`(−cq)`
∑

i+j+k=`

aibjckqTi−1+Tj−1+Tk−1 .Y

(q)i(q)j(q)k(1 + aq`)(1 + bq`)(1 + cq`)

= (−aq)∞(−bq)∞(−cq)∞, (4.1)

where

Y = 1 + aq`+i + bq`+i+j + cq`+i+j+k + abq2`+i+j + acq2`+i+j+k

+bcq2`+i+j+k + abcq3`+i+j+k. (4.2)

As in (1.5), here too in (4.2), even though ` = i+j+k, we have preferred to write
the exponents of q in a certain form in order to see a pattern. The construction
of (4.1) involved computing generating functions in eight different cases, just as
the combinatorial construction of (1.5) given in Section 2 involved four cases;
the addition of these eight generating functions resulted in an amalgamation
and in the expression Y given in (4.2).

In the r-dimensional case, we have parts occurring in r possible colors a1,
a2, ..., ar. We need an ordering among the colors, that is an ordering among all
colored versions of the same integer n, and for this purpose we take

a1 < a2 < a3 < ... < ar. (4.3)
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What (4.3) means is that if an integer n occurs in color ai and in color aj , then
n in color aj is larger if j > i. If m < n are distinct (uncolored) integers, then
that order is preserved no matter what colors are assigned to m and n. The
symbols ai will play a dual role: on the one hand they represent colors, on the
other they will be free parameters whose powers will represent the number of
parts in that color. With these conventions, we are considering partitions into
parts in which no integer in a specified color can occur more than once. The
generating function for such partitions is obviously

(−a1q)∞(−a2q)∞...(−arq)∞. (4.4)

The problem now is to produce an expansion for this product that extends
(1.5) and (4.1). To achieve this, we will define the colors ai to be primary
colors, the products aiaj with i < j to be secondary colors, the products aiajak
with i < j < k to be ternary colors, and so on. Given a color x (primary, or
secondary, or ternary, or...), we define

`(x) = the highest order color in x, (4.5)

and
ν(x) = the number of primary colors in x. (4.6)

For example, if x = a1a3a4, then `(x) = a4, and ν(x) = 3. We now define the
polynomial

Y = Yi1,i2,...,ir (a1, a2, ..., ar;N) =:
∑
x

xq
Nν(x)+

∑
aj≤`(x) ij , (4.7)

where the sum is over all possible colors x formed from a1, a2, ..., ar, includ-
ing the null color, in which case the exponent of q will be zero. With these
definitions, the r-dimensional extension of Sylvester’s identity is:

1 +
∑
N≥1

qN
2

r∏
j=1

(−ajq)N−1
∑

i1+i2+...ir=N

a1
i1a2

i2 ...ar
irqTi1−1+Ti2−1+...+Tir−1 .Y

(q)i1(q)i2 ...(q)ir

= (−a1q)∞(−a2q)∞...(−arq)∞, (4.8)

where Y is as in (4.7).

Remark: For convenience in the proofs of (4.8) to be given in the next two
sections, we prefer to use (−aiq)N−1 instead of (−aiq)N/(1 + aiq

N ) as in (1.5)
and (4.1). Also to facilitate the proof of (4.8), it is useful to replace Y by

Z =:

r+1∑
j=1

{
j−1∏
k=1

(1 + akq
N ).(1− qij ).q

∑j−1
k=1 ik}. (4.9)

In defining Z by (4.9), we have formally set ir+1 =∞ so that 1−qir+1 = 1. The
replacement of Y by Z in the 2-dimensional case, is the replacement of Y by
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the expression on the right in (3.5). We need to show that Y and Z are equal
and we conclude this section by proving this:

Lemma:
Y = Z.

Proof of the Lemma: Rewrite the expression in (4.9) as

Z =

r∑
j=1

{
j−1∏
k=1

(1 + akq
N ).[q

∑j−1
k=1 ik − q

∑j
k=1 ik ]}+

r∏
k=1

(1 + akq
N )q

∑r
k=1 ik

= 1 +

r∑
j=1

{
j∏

k=1

(1 + akq
N )−

j−1∏
k=1

(1 + akq
N )}q

∑j
k=1 ik

= 1 +

r∑
j=1

ajq
N

j−1∏
k=1

(1 + akq
N ).q

∑j
k=1 ik (4.10)

= 1 +
r∑
j=1

∑
`(x)=aj

xq
Nν(x)+

∑
ak≤`(x) ik =

∑
x

xq
Nν(x)+

∑
ak≤`(x) ik = Y,

thereby proving the lemma.

5. Combinatorial proof of the multi-dimensional identity

Starting with the product side of (4.8), we will now construct the series
in (4.8) combinatorially, and thus provide a combinatorial proof of the multi-
dimensional identity.

The infinite product on the right in (4.8) is obviously the generating function
of partitions whose parts occur in the colors a1, ..., ar, with no part in the same
color repeating. We may represent these partitions as Ferrers graphs, where
we can use (4.3) to decide the order among parts equal in size but of different
colors, and we can color the right extreme node of each row of the graph in the
color of the part. We now consider the Durfee squares in such Ferrers graphs
and note that there are 2r cases to consider, namely when the Durfee square
D has all uncolored nodes in the right hand extreme column, or the right hand
extreme column could consist of nodes colored ai1 , ai2 , ..., ais , from the bottom
upwards consecutively, with any remaining nodes being uncolored. These cover
2r − 1 cases and so there are a total of 2r cases to consider. We will now show
that these 2r cases can be collected together to form r + 1 groupings. In other
words, the generating functions for these cases can be combined to amalgamate
nicely such that in the end there are r+1 terms to sum, and this will correspond
to the r + 1 terms in the expression Z we considered previously in (4.9).

Consider all Ferrers graphs which have an N ×N Durfee square and have i1
parts in color a1, i2 parts in color a2, ..., ir parts in color ar, in the portion on
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and to the right of the Durfee square. This implies that i1 + i2 + ... + ir = N .
In computing the generating functions for the 2r cases, the expression

C =: qN
2

r∏
j=1

(−ajq)N−1
a1
i1a2

i2 ...ar
irqTi1−1+Ti2−1+...+Tir−1

(q)i1−1(q)i2−1...(q)ir−1
(5.1)

will occur as a common factor. Thus in discussing the generating functions of
the various cases, we focus only on factors other than those contained in C. We
call these as the extra factors and denote them by E. Of course E will depend
on the case being discussed.

Consider first the case c0 when all nodes in the right hand extreme column
of D are uncolored. In this case

c0 : E =
(1 + a1q

N )(1 + a2q
N )...(1 + arq

N )qi1+i2+...+ir

(1− 1qi1)(1− qi2)...(1− qir )
. (5.2)

Next consider the case cr where the right hand bottom corner of D has color
ar. Since ar is the highest order color, this implies that all nodes above ar in
D must be uncolored. Thus the extra factors in this case are given by

cr : E =
(1 + a1q

N )(1 + a2q
N )...(1 + ar−1q

N )qi1+i2+...ir−1(1− qir )

(1− qi1)(1− qi2)...(1− qir )
. (5.3)

Note that in (5.3) we have deliberately not canceled the factor (1 − qir ) so as
to provide the same common denominator for all cases.

From now on the groupings come into play.
Consider now the situation where the bottom right hand corner node is

colored ar−1. This itself gives rise to two cases which we can call Case cr−1,0 and
Case cr−1,r. More precisely, Case cr,,0 is when in D we have all uncolored nodes
above the node that is colored ar−1. Case cr−1,r is when the node immediately
above ar−1 is colored ar, and everything above must be uncolored. The extra
factors in these cases are:

Case cr−1,0 : E =
(1 + a1q

N )(1 + a2q
N )...(1 + ar−2q

N ).qi1+i2+...+ir−2+ir

(1− qi1)(1− qi2)...(1− qir−2)(1− qir )
(5.4)

and

Case cr−1,r : E =
(1 + a1q

N )(1 + a2q
N )...(1 + ar−2q

N ).qi1+i2+...+ir−2

(1− qi1)(1− qi2)...(1− qir−2)
.

(5.5)
It is interesting that the extra factors in (5.4) and (5.5) when added amalgamate
nicely to

cr−1,0+cr−1,r : E =
(1 + a1q

N )(1 + a2q
N )...(1 + ar−2q

N ).qi1+i2+...+ir−2 .(1− qir−1)

(1− qi1)(1− qi2)...(1− qir )
.

(5.6)
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Consider now the general situation where the bottom right hand corner of
D has color aj . This situation corresponds to 2r−j cases because above this
node there could be colors aji , aj2 , ..., ajs where j1 < j2 < .. < js could be
any subset of {j + 1, j + 2, ..., r}. The null subset here corresponds to the case
when all nodes above aj are uncolored. In the case where the colors above aj
are specified as aj1 , aj2 , ..., ajs , the extra factor E is given by

(1 + a1q
N )(1 + a2q

N )...(1 + aj−1q
N )

(1− qi1)(1− qi2)...(1− qij−1)
.

qi1+i2+...ir

qij+ij1+ij2+...+ijs
.
(1− qij )(1− qij1 )...(1− qijs )

(1− qij )(1− qij+1)...(1− qir )

=
(1 + a1q

N )(1 + a2q
N )...(1 + aj−1q

N )

(1− qi1)(1− qi2)...(1− qir )
.qi1+i2+...+ir .

(1− qij )

qij
.

s∏
t=1

(1− qijt )

qijt
.

(5.7)
Summing the expression in (5.7) over all 2r−j vectors aj1 , aj2 , ..., ajs , we get

(1 + a1q
N )(1 + a2q

N )...(1 + aj−1q
N )

(1− qi1)(1− qi2)...(1− qir )
.qi1+i2+...+ir .

r∏
t=j+1

{1+
(1− qit)
qit

}. (1− q
ij )

qij

=
(1 + a1q

N )(1 + a2q
N )...(1 + aj−1q

N )

(1− qi1)(1− qi2)...(1− qir )
.qi1+i2+...+ij−1 .(1− qij ). (5.8)

So what we have established here is that the the extra factors E correspond-
ing to the 2r−j cases corresponding to the situation where the bottom right
hand node is aj all add up and amalgamate nicely to the expression in (5.8).
Thus the total number of cases including the uncolored case given in (5.2) is

1 + 1 + 2 + 4 + ...+ 2r−1 = 2r, (5.9)

and the 2r cases can be combined into r + 1 groups, which correspond to the
r+ 1 summands on the left in (5.9). If we now sum the expression in (5.8) over
all j, we get

E =
Z

(1− qi1)(1− qi2)...(1− qir )
. (5.10)

Finally if we attach the extra factor E in (5.10) to the common factor C in
(5.1) and sum over all vectors i1, i2, ...ir that add up to N , and sum over all
N , we get the series in (4.8) with Z in place of Y . Since we have shown that
Y = Z, this proves the multi-dimensional identity (4.8) combinatorially.

Remarks:
(i) When r = 2, the grouping that we have done here is to sum the expres-

sions in (2.12) as
I + II + (III + IV ) (5.11)

and not in the form (I + III) + (II + IV ) that we did in Section 2. In any case
amalgamations can be achieved in many ways.

(ii) The grouping in (5.11) corresponds to the decomposition in (3.5) in the
case r = 2.
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In the next section we prove (4.8) q-theoretically by extending the proof in
Section 3 to the r-dimensional setting. That is we give the r-dimensional version
of Cayley’s proof.

6. q-hypergeometric proof of the multi-dimensional identity

In view of the Lemma, and in view of our combinatorial derivation in the
previous section, we will replace Y in (4.8) by Z with Z as in (4.9). We then
multiply both sides of (4.8) by

(1 + a1)(1 + a2)...(1 + ar)

and denote the resulting sum S = S(a1, a2, ..., ar). Thus (4.8) is equivalent to

S =:
∑
N≥0

qN
2

r∏
k=1

(−ak)N
∑

i1+i2+...+ir=N

a1
i1a2

i2 ...ar
irqTi1−1+Ti2−1+...+Tir−1 .Z

(q)i1(q)i2 ...(q)ir

=
r∏
i=1

(−ai)∞ =: P, (6.1)

where P = P (a1, a2, ..., ar) is defined to be the product on the right in (6.1).
The product P clearly satisfies the functional equation

P (a1, a2, ..., ar) = (1 + a1)(1 + a2)...(1 + ar)P (a1q, a2q, ..., arq). (6.2)

We will now show that the sum S satisfies the same functional equation. To
this end we note that Z is a sum of r + 1 expressions Zj , one for each j, where
j runs from 1 to r+ 1. Let us denote by Sj that part of S corresponding to the
replacement of Z by Zj in (6.1). Thus we have

Sr+1 =
∑
N≥0

qN
2

r∏
k=1

(−ak)N+1

∑
i1+i1+...ir=N

∏r
m=1 (amq)

im .
∏r
m=1 q

Tim−1

(q)i1(q)i2 ...(q)ir
.

(6.3)
Next

Sr =
∑
N≥0

qN
2
r−1∏
k=1

(−ak)N+1.(−ar)N
∑

i1+i2+...+ir=N

∏r−1
m=1 (amq)

im .ar
ir .

∏r
m=1 q

Tim−1

(q)i1(q)i2 ...(q)ir−1
(q)ir−1

.

(6.4)
Noting the change in going from (6.3) to (6.4), we see that the general case is

Sj =
∑
N≥0

qN
2
j−1∏
k=1

(−ak)N+1.

r∏
`=j

(−a`)N×

∑
i1+i2+...+ir=N

∏j−1
m=1 (amq)

im .
∏r
n=j (an)

in .
∏r
m=1 q

Tim−1

(q)i1(q)i2 ...(q)ij−1
(q)ij−1(q)ij+1

...(q)ir
. (6.5)

13



Proceeding in this fashion, the penultimate sum is

S2 =
∑
N≥0

qN
2

(−a1)N+1

r∏
`=2

(−a`)N
∑

i1+i2+...+ir=N

(a1q)
i1 .

∏r
n=2 (an)

in .
∏r
m=1 q

Tim−1

(q)i1(q)i2−1(q)i3 ...(q)ir
.

(6.6)
The final sum is

S1 =
∑
N≥0

qN
2

r∏
`=1

(−a`)N
∑

i1+i2+...ir=N

∏r
n=1 (an)

in ∏r
m=1 q

Tim−1

(q)i1−1(q)i2 ...(q)ir
. (6.7)

It is to be noted that in each of the sums Sj for 1 ≤ j ≤ r, we have ij ≥ 1.
So what we do next is to replace ij by ij + 1 and consequently N by N + 1 in
Sj for 1 ≤ j ≤ r. What this does is to make the denominators all the same for
all Sj , namely

(q)i1(q)i2 ...(q)ir ,

and retain the summation condition for the indices as i1 + i2 + ...+ ir = N . But
then we have the replacement

Ti1−1 + Ti2−1 + ...+ Tir−1 7→ ij + Ti1−1 + Ti2−1 + ...+ Tir−1.

Thus the sums Sj for 1 ≤ j ≤ r can be rewritten as

Sj =
∑
N≥0

q(N+1)2
j−1∏
k=1

(−ak)N+2.

r∏
`=j

(−a`)N+1×

∑
i1+i2+...ir=N

∏j
m=1 (amq)

im .aj .
∏r
n=j+1 (an)

in .
∏r
m=1 q

Tim−1

(q)i1(q)i2 ...(q)ir
. (6.8)

Note the difference between (6.5) and (6.8). Since

S = Sr+1 +

r∑
j=1

Sj ,

we see from (6.8) and (6.3) that

S =

r∏
k=1

(1+ak)
∑
N≥0

qN
2

r∏
`=1

(−a`)N
∑

i1+i2+...ir=N

∏r
m=1 (amq)

im .
∏r
m=1 q

Tim−1 .W

(q)i1(q)i2 ...(q)ir
,

(6.9)
where

W = 1 + q2N+1
r∑
j=1

{ajq−ij+1−ij+2−...−ir
j−1∏
k=1

(1 + akq
N+1)}. (6.10)
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Finally notice that because i1 + i2 + ...+ ir = N , (6.10) can be rewritten as

W = 1 +

r∑
j=1

ajq
N+1

j−1∏
k=1

(1 + akq
N+1).q

∑j
k=1 ik = Yi1,i2,...ir (a1q, a2q, ..., arq),

(6.11)
on comparison with (4.10). Thus from (6.9) and (6.10) and the fact that Y = Z,
we see that S satisfies the functional equation

S(a1, a2, ..., ar) = (1 + a1)(1 + a2)...(1 + ar)S(a1q, a2q, ..., arq). (6.12)

Since S and P satisfy the same initial conditions, we deduce from (6.12) and (6.2)
that identity (6.1) holds and this completes the proof of the multi-dimensional
Sylvester identity.

Remark: In the proof we replaced Y by Z to set up the iteration ai 7→ aiq,
but in the end we had to revert back to Y as can be seen from (6.11). Thus
both versions of the multi-dimensional identity with Y and Z are needed.

7: Two problems

Even though Sylvester proved (1.1) combinatorially, he did not provide a
combinatorial interpretation of it. In [1] we showed that the Sylvester identity
had the following weighted partition interpretation:

Theorem A:
Let pd(n; k) denote the number of partitions of n into distinct parts, and with

exactly k parts.
Let g3(n; ν, `) denote the number of partitions of n of the form b1 + b2 + ...bν

such that bi − bi+1 ≥ 3, of which ` of the gaps bi − bi+1 ≥ 4 with the convention
bν+1 = −1. Then ∑

k

pd(n; k)ak =
∑
ν.`

g3(n; ν, `)aν(1 + a)`.

It would be nice to determine a similar weighted partition implication of
the multi-dimensional identity, where the series in (4.8) is interpreted as the
generating function of partitions whose colored parts satisfy certain difference
conditions.

Starting from Schur’s theorem [9], Andrews [4],[5] produced two infinite hier-
archies of partition theorems to moduli 2r−1. In [2] Theorem 15, we formulated
the Andrews hierarchies in terms of partitions into r primary colors and the com-
plete alphabet of 2r − 1 colors generated by the r primary colors; the proof of
this theorem involved the amalgamation of various generating functions in the
spirit of what was demonstrated in Section 5. On seeing this, Dominique Foata
asked in 1998 (after my talk at the conference in Maratea, Italy, for George
Andrews’ 60-th birthday) whether a key identity for the Andrews hierarchies
can be constructed that extends the key identity (2.18) for Schur’s theorem.
However no hypergeometric key identity is known for the Andrews hierarchies.
The second problem we would like to raise is whether our multi-dimensional
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identity (4.8) is the elusive key identity for the Andrews hierarchies, or whether
such a key identity for the Andrews hierarchies can be constructed from ideas
underlying (4.8), because in (4.8) we are using the complete alphabet of 2r − 1
colors generated by r primary colors. Perhaps symmetrizing the key identity
(4.8) in the parameters a1, a2, ..., ar might be be helpful.

Acknowledgements: I found the multi-dimensional identity combinatori-
ally during a visit to Penn State University in Fall 2005 when I had a research
leave. Subsequently in 2007, I was able to extend to r dimensions Andrews’
q-theoretic proof of my two-dimensional identity. However, I wrote this up only
in Fall 2013 when I visited Penn State University on a sabbatical. My thanks
to George Andrews and the Mathematics Department at Penn State University
for the hospitality extended.
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