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Abstract: Continuing our earlier work on partitions with non-repeating
odd parts and q-hypergeometric identities, we now study these partitions com-
binatorially by representing them in terms of 2-modular Ferrers graphs. This
yields certain weighted partition identities with free parameters. By special
choices of these parameters, we connect them to the Göllnitz-Gordon parti-
tions, and combinatorially prove a modular identity and some parity results.
As a consequence, we derive a shifted partition theorem mod 32 of Andrews.
Finally we discuss basis partitions in connection with the 2-modular represen-
tation of partitions with non-repeating odd parts, and deduce two new parity
results involving partial theta series.

1. Introduction

Let Po,d denote the set of partitions in which the odd parts do not repeat.
The generating function of such partitions admits the product representation

(1.1)
∞∏
m=1

(1 + bzq2m−1)

(1− zq2m)
,

where the power of b keeps track of the number of odd parts and the power
of z keeps track of the total number of parts. In a recent paper [4], by rep-
resenting these partitions in terms of 2-modular Ferrer’s graphs, we derived
the following Lebesgue type expansion for the above product:

(1.2)
(−bzq; q2)∞
(zq2; q2)∞

=
∞∑
k=0

zkq2k2 .
(−bq−1; q2)k

(q2; q2)k
.
(−bzq; q2)k
(zq2; q2)k

.
(1 + bzq4k−1)

(1 + bzq2k−1)
.

Here and in what follows, we have made use of the standard notation

(1.3) (a)n = (a; q)n =
n−1∏
j=0

(1− aqj), for integers n ≥ 0,

and

(1.4) (a)∞ = (a; q)∞ = lim
n→∞

(a)n =
∞∏
j=0

(1− aqj), when |q| < 1.

————————————-
*Research supported in part by NSA Grant MSPS-08G-154

1



For partitions in which the even parts do not repeat, there is the classic
Lebesgue identity (see Andrews [8], Ch.2)

(1.5)
(−bq2; q2)∞

(q; q2)∞
=
∞∑
k=0

qk(k+1)/2(−bq)k
(q)k

.

Primarily owing to this identity, partitions with non-repeating even parts
have been studied extensively. Much less is known about partitions with
non-repeating odd parts, but there are interesting studies due to Berkovich-
Garvan [11], Hirschhorn-Sellers[16] and Radu-Sellers[19]; these partitions
have also been discussed by Andrews [6], [7] in certain contexts..

To obtain a Lebesgue type expansion for the product in (1.1), we repre-
sented partitions with non-repeating odd parts by 2-modular Ferrers graphs
and derived (1.2) in [4]. The goal in [4] was to connect (1.2) with several fun-
damental q-hypergeomteric identities whereas the emphasis here is to focus
on the 2-modular representation and deduce partition identities combina-
torially. The results here and in [4] are different from those discussed by
the other authors and contstitute the first systematic combinatorial study of
partitions with non-repeating odd parts via their 2-modular Ferrers graphs.

In the next section we connect Po,d surjectively with the set of partitions
into parts that differ by ≥ 4 with strict inequality if a part is odd. The
collection of these partitions Ψ is a subset of Po,d. So we establish a weighted
partition identity (see Theorem 2 in Section 3) in parameters b, z that con-
nects partitions in Ψ with those in Po,d and explains the link between (1.2)
and the surjection. Next in Section 4 we specialize the parameters in The-
orem 2 and establish links with the well-known Göllnitz-Gordon partitions,
deducing combinatorially a modular identity that falls out of (1.2) by these
specializations. From this we also deduce in Section 4 some new parity results
involving partitions with non-repeating odd parts and the Göllnitz-Gordon
partitions. In Section 5 we show how the modular identity leads to a shifted
partition identity mod 32 due to Andrews [9], and in Section 6 we briefly
describe an alternate approach to this modular identity that we had stud-
ied earlier [2]. Finally in Section 7 we discuss basis partitions in connection
with these 2-modular graphs of partitions with non-repeating odd parts, and
establish new parity results using the idea of signature of a basis partition.

By considering variants of Ferrers graphs in different shapes, Propp [18]
has shown that a number of classical partition functions as well as some
new ones can be treated. In particular, he noted that partitions with non-
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repeating odd parts are linked to Göllnitz-Gordon partitions (with difference
conditions) by considering certain special diamond shaped 2-modular dia-
grams. Although there are connections with Propp’s work, we have exploited
the connection between partitions with non-repeating odd parts and the
Göllnitz-Gordon partitions to obtain parity results and the Andrews shifted
partition identity. Thus our methods and results are different from Propp’s.

We conclude this section with some notations and conventions.
For a partition π we let

σ(π) = the sum of the parts ofπ (the number being partitioned),

λ(π) = the least part of π, and ν(π) = the number of parts of π.

If we count the number of parts of a specific type, we denote that with a
subscript. For example, νo(π) (resp νe(π)) will denote the number of odd
(resp. even) parts of π.

In what follows we will discuss only the 2-modular Ferrers graphs of par-
titions with non-repeating odd parts. When we refer to the Durfee square,
we mean the largest square of nodes in such 2-modular graphs.

Finally, with regard to the q-product notation in (1.3) and (1.4), for
simplicity we will write (a)n in place of (a; q)n such as in (1.5) when the base
is q, but when the base is anything other than q, it will be displayed such as
in (1.2). Further notations and conventions will be explained as we go along.

2. Hooks, special partitions, and primary partitions

The 2-modular Ferrers graph of a partition π = b1 + b2 + · · ·+ bν is a left
justified graph with the i-th row representing the part bi as a row of twos and
ending in a one precisely when bi is odd. In [4] we studied partitions with
non-repeating odd parts in terms of their 2-modular Ferrers graphs because
in such graphs the ones (if any) will occur in corners. Thus by reading the
graph columnwise, we get the 2-modular graph of another partition π∗ ∈ Po,d.
Also π and π∗ will have the same number of odd parts. It was this convenient
property that enabled us to obtain the series representation in (1.2). With
regard to the Durfee square of such Ferrers graphs, the bottom right hand
corner could have a one or a two, but the rest of the entries in the Durfee
squares will all be twos.

Terminology: In a two modular Ferrers graph, by an odd (resp. even)
row (resp. column), we mean a row (resp. column) that ends in a one (resp.
two). By the length of a row or a column, we mean the number of nodes in
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it. By the size of a row or column, we mean the sum of the numbers at its
nodes, namely the integer that it represents.

Note that in (1.2), the last factor in (−bzq; q2)k is (1 + bzq2k−1) which is
also in the denominator. The first factor of (−bq−1; q2)k is (b + q)/q. If we
combine these observations along with the decomposition

(2.1) (b+ q)(1 + bzq4k−1) = q(1 + bzq2k−1)(1 + bq2k−1) + b(1− zq2k)(1− q2k),

then (1.2) can be rewritten as

(−bzq; q2)∞
(zq2; q2)∞

=
∞∑
k=0

zkq2k2 .
(−bq; q2)k
(q2; q2)k

.
(−bzq; q2)k
(zq2; q2)k

(2.2) +
∞∑
k=1

bzkq2k2−1.
(−bq; q2)k−1

(q2; q2)k−1

.
(−bzq; q2)k−1

(zq2; q2)k−1

=: Σ0 + Σ1.

If the 2-modular Ferrers graphs of partitions π ∈ Po,d are classified according
to their Durfee squares, then Σ0 is the generating function of such Ferrers
graphs in which the Durfee square has twos everywhere, whereas Σ1 in (2.2)
is the generating function of Ferrers graphs which have a one in the right
hand bottom corner of the Durfee square and twos everywhere else in the
Durfee square. Indeed it was (2.2) that was derived first in [4], and from this
the smoother form (1.1) was deduced using (2.1). We now will discuss the
partition interpretation of the terms in (2.2).

In Σ0, the term

(2.3)
q2k2

(q2; q2)k

can be thought of as of given by a k× k Durfee square of twos with columns
of twos of length≤ k placed to the right of the Durfee square; If in such a
graph we add the numbers at the nodes along the hooks, we see that the term
in (2.3) is the generating function of partitions into even parts that differ by
≥ 4. When the term in (2.3) is multiplied by factor (−bzq; q2)k, we may
interpret this as inserting at most one column of length i, for each i between
1 and k, each such column having a 1 at the bottom and twos everywhere. If
we now add the numbers at the nodes along the hooks of this graph, we get
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some odd parts whenever a column ending in a one is inserted. This yields
odd parts, but then the gap is > 4 if we add numbers along the hooks.

This leads us to consider the set Ψ of partitions into parts that differ by
≥ 4 with strict inequality when a part is odd. Let us call such partitions
special. What we have noted above is that

(2.4) zkq2k2 (−bq; q2)k
(q2; q2)k

is the generating function of special partitions π into k parts with the power
of b keeping track of νo(π), and with smallest part ≥ 2. Similarly

(2.5) bzkq2k2−1 (−bq; q2)k−1

(q2; q2)k−1

is the generating function of special partitions into k parts with smallest part
1, with the power of b keeping track of the number of odd parts.

At this stage it is convenient to introduce some further notation and
terminology. If we represent a partition π by a 2-modular graph, the portion
below the Durfee square represents a partition which we denote by πb, and
the portion to the right of the Durfee square represents another partition
which we denote by πr. Typically, we discuss the conjugate π∗r instead of πr.

Very important in our discussion below are partitions π for which πb is
empty. We call such a partition primary and we let P denote the set of
primary partitions within Po,d.

If we represent a partition π by a 2-modular Ferrers graph, we could form
a new partition ρ(π) = π from π by adding the numbers along the hooks of
the graph. Our discussion above can be put in the form of a

Lemma 1: The hook operation or mapping

π 7→ ρ(π) = π

is a surjection from Po,d to Ψ, and a bijection between P and Ψ.
Note that both P and Ψ are subsets of Po,d. Given π ∈ Ψ, it is of interest

to determine the size of the inverse image ρ−1(π). This is the same as asking
how we may construct all the partitions in Po,d from the subset of primary
partitions. We shall answer this question in the next section and determine
the weights that need to be attached to each π ∈ P so that when one sums
these weights over the primary partitions of n, one gets Po,d(n), the number
of partitions of n with non-repeating odd parts.
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In (2.4) and (2.5) we only interpreted a part of the terms in terms of
special partitions or primary partitions. The collection of all partitions in Po,d
can be obtained from the primary partitions by means of a sliding operation
as will be shown in the next section. This construction of all partitions of
Po,d using the sliding operation will explain the role of the factors

(−bzq; q2)k
(zq2; q2)k

and
(−bzq; q2)k−1

(zq2; q2)k−1

in (2.2).

3. The sliding operation and a weighted partition theorem

Recall that primary partitions have nothing below the Durfee square.
By a sliding operation on a partition π, we mean the removal of certain
columns from πr, and the placement of these columns as rows below the
Durfee square. The collection of all unrestricted partitions of an integer can
be obtained from primary partitions of that integer by performing all possible
sliding operations and we studied this aspect closely in [3]. In the case of
partitions in Po,d, one has to pay attention to how these sliding operations
are performed and that is what we discuss now. Before that, we note:

Under a sliding operation on a partition π, the hook sizes are invariant,
and so ρ(π) = π is invariant. This is crucial in our arguments below.

Given a primary partition π, suppose there are ` odd columns in πr. Then
any of these columns could be slid down and placed as a row below the Durfee
square. So for each of these odd columns we have two choices - we may slide
or not slide. Thus there are 2` choices.

With regard to the even columns, suppose there are ni columns of twos
of length i. Then we could slide down 0, or 1, or 2, ..., or all ni columns,
thereby providing ni + 1 choices. Now sliding the odd columns and the even
columns of different lengths are ”independent”. Thus each primary partition
π will spawn

(3.1) ω(π) = 2νo(π
∗
r )
∏
i

(ni + 1)

partitions in Po,d, and this would be the weight attached to π. However it is
to be noted the partitions in Po,d obtained in this fashion have the property
that in the Ferrers graph, no odd row below the Durfee square is equal to
any odd column to the right of the Durfee square. We call this Case 1.
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Next we discuss Case 2, which involves partitions in Po,d where some odd
row below the Durfee square could equal an odd column to the right of the
Durfee square. In order to determine this we define a junction in the 2-
modular graph of a primary partition to be a 2 occupying a corner position
such that the part in the next row above is at least larger by two. So if
we have a junction, we could split the 2 in the corner as a 1+1 and create
two equal odd columns whose lengths will be different from any of the odd
columns to the right of the Durfee square. We then slide one of these two
equal odd columns and place it as a row below the Durfee square. We can
perform this splitting operation at every junction. The important thing is
that ALL partitions coming under Case 2 can be obtained in this manner
by performing the splitting operation at the various junctions, sliding one of
each resulting pair of odds, and sliding the even columns arbitrarily. Now
the splitting of a two at each junction will affect the number of columns of
evens both to the right and to the left of the junction. So we have to be
careful, and for this purpose we define a secondary partition π′ generated by
a primary partition π to be one in which the splitting is done at a certain
number of junctions, one odd column is slid down from each split junction,
but NO other columns to the right of the Durfee square are slid down.

Next denote by Sπ the set of secondary partitions generated by a primary
partition π. Given π′ ∈ Sπ, it will still have ` = νo(π

∗
r) columns to the right

of the Durfee square which are not equal to any of the rows below the Durfee
square of π′, because the rows of π′b came out of splitting only the even rows
ending in junctions. Suppose the Ferrers graph of π′ has n′i columns of twos
of length i. These columns of twos could be slid down as before. Thus each
secondary partition π′ spawns

(3.2) ω(π′) = 2νo(π
∗
r )
∏
i

(n′i + 1)

partitions covered under Case 2. Thus each primary partition will spawn

(3.3) w(π) = ω(π) +
∑
π′∈Sπ

ω(π′)

partitions in Po,d.
Remark We may merge (3.1) into (3.2) by observing that the expression

in (3.1) corresponds to the case of (3.2) where no splitting is done at any
junction. But we have preferred to treat the cases of split junctions and the
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unsplit case separately. In any case, the weight w(π) we have determined
yields

Theorem 1: Let Po,d(n) denote the number of partitions of n with non-
repeating odd parts. Then

Po,d(n) =
∑

π∈P,σ(π)=n

w(π).

The weight formula in (3.3) may look complicated. But what we can
do is to evaluate these weights as functions of parameters b, z, and then
specialize these parameters to get a significant collapse and simplification.
More precisely, we first note that ω(π) in (3.1) can be replaced by

(3.4) ω(π; b, z) = bνo(π)zν(π)(1 + z)νo(π
∗
r )
∏
i

(1 + z + z2 + ...+ zni).

Similarly, if a secondary partition is born out of a primary partition π by
splitting h out of the j junctions, then ω(π′) in (3.2) can be replaced by

(3.5) ω(π′; b, z) = b2hbνo(π)zhzν(π)(1 + z)ν
∗
o (πr)

∏
i

(1 + z + z2 + ...+ zn
′
i).

Finally (3.3) is replaced by

(3.6) w(π; b, z) = ω(π; b, z) +
∑
π′∈Sπ

ω(π′).

Thus Theorem 1 can be refined to:
Theorem 2: The partitions in Po,d and the primary partitions are related

by the weighted identity∑
π∈Po,d,σ(π)=n

bνo(π)zν(π) =
∑

π∈P ;σ(π)=n

w(π; b, z)

In deriving Theorems 1 and 2, used the set Sπ of secondary partitions
generated by a primary partition π, but did not say anything about the size
of this set. We determine this now since it is of intrinsic interest.

If a primary partition π has j = j(π) junctions, then for each junction we
have choice of either to split it or not to split it. Thus each primary partition
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generates ≤ 2j−1 secondary partitions, because if we do not split any of the
junctions, that would correspond to the primary partition itself. Thus

(3.7) |Sπ| ≤ 2j(π) − 1.

The reason that there is an inequality in (3.7) is because if there two consecu-
tive junctions such that the sizes of their rows differ by exactly 2 (equivalently
in the partition π generated by π, the two corresponding parts differ by ex-
actly 6), then it is not possible to split them simultaneously. Thus given the
set of junctions of π, we need to consider chains of junctions in it, where by
a chain χ, we mean a maximal sequence of consecutive junctions such that
their corresponding rows differ by exactly 2. Thus the set of junctions is a
union of these chains. Note that if a chain has only one element in it, then
we have complete freedom in choosing whether to split it or not. We call
such a junction as an independent junction. In contrast two junctions will be
called dependent if their row sizes differ by exactly 2.

Now given a chain χ whose length (= number of junctions in it) `(χ) ≥ 2,
the number of ways of splitting is the number of ways of choosing a subset of
junctions no two of which are dependent (consecutive). The number of such
choices is given by

Lemma 2: The number of subsets of the first n positive integers such
that these subsets can never have a pair of consecutive integers, is Fn+2,
where {Fm} is the Fibonacci sequence given by F0 = 0, F1 = 1, and Fm =
Fm−1 + Fm−2, for m ≥ 2.

The lemma is well known and is easily proved by induction on m.
From the Lemma it follows that if `(χ) ≥ 2, then the number of ways

of splitting these junctions is F`(χ)+2. Note that if `(χ) = 1, that is if the
junction is independent, then the number of choices is 2 = F3 = F`(χ)+2 even
in this case. Thus we have

Theorem 3: Given a primary partition π, the number of secondary par-
titions generated by π is given by

|S(π)| = {
∏
χ

F`(χ)+2} − 1,

where the product is taken over all chains of junctions including chains of
length 1, and 1 is subtracted since the primary partition π is not in Sπ.

Remarks:
(i) We have given in Theorem 2 the weights to be attached to the primary

partitions. If the primary partitions are converted to special partitions by
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hooks, then these weights will be given by difference conditions on the parts.
We note that Theorem 2 has been proved combinatorially and is the partition
theoretic version of, and equivalent to, (2.2).

(ii) It is to be noted, that once the secondary partitions have been deter-
mined, the weights to be assigned to each secondary partition is by the same
rule (3.5).

In the next section we will make special choices of the parameters b and z,
to induce significant cancellation owing to the collapse of the weights. This
will lead to links with the Göllnitz-Gordon partitions, and yield some nice
parity results as well.

4. Göllnitz-Gordon partitions and parity results

The famous Göllnitz-Gordon identities are

(4.1) G(q) =:
∞∑
k=0

qk
2
(−q; q2)k

(q2; q2)k
=

1

(q; q8)∞(q4; q8)∞(q7; q8)∞
,

and

(4.2) H(q) =:
∞∑
k=0

qk
2+2k(−q; q2)k

(q2; q2)k
=

1

(q3; q8)∞(q4; q8)∞(q5; q8)∞
.

These identities are the perfect analogues to the modulus 8 for what the
celebrated Rogers-Ramanujan identities are to the modulus 5. The identities
were discovered independently by Göllnitz [12] and Gordon [13]. The par-
tition interpretation of the products in (4.1) and (4.2) is obvious - they are
the generating functions of partitions into parts ≡ 4, ±2i − 1 (mod 8), for
i = 1, 2. The partition interpretation of the series in (4.1) and (4.2) is that
for i = 1, 2, the k-th terms are the generating functions of partitions into k
parts that differ by at least 2, with strict inequality if a part is even, and
with least part ≥ 2i − 1. We call the partitions satisfying these difference
conditions as Göllnitz-Gordon partitions of the first and second kind and
denote the set of such partitions by GG1 and GG2 respectively.

We now set the free parameter z = −1 and see what the effect is com-
binatorially. Given a primary partition π and all its secondaries, consider
the set of all partitions generated by performing sliding operations. Note
that in the weight formula w(π; b, z) in (3.6), there always a factor (1 + z)
if νo(π

∗
r) ≥ 1, and this factor would make the weight 0 when z = −1. Thus
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for the weight to be non-zero, we must have νo(π
∗
r) = 0. This means that

except for the case where the bottom right node in the Durfee square is a
1, all other nodes in the graph must be twos, other than the pairs of odds
generated by the splitting of junctions. Let us for the moment not consider
the the pairs of odd rows obtained by splitting the junctions but focus on
the remainder of the graph in the case when the bottom right entry in the
Durfee square is a 2. Note at this stage that the sums

1 + z + z2 + ...+ zni and 1 + z + z2 + ...+ zn
′
i

become zero if ni or n′i is odd, and equal to 1 when ni or n′i is even. So the
non-zero contribution to w(π; b,−1) comes from those π or π′ ∈ Sπ whose
columns of twos will occur in pairs. Denote by π′′ the subgraph of π or π′

by ignoring (for the moment) the pairs of odd columns from split junctions.
The partition ρ(π′′) generated by hooks of π′′ will be a partition into even
parts differing by ≥ 4 with all parts ≡ 2(mod 4). If we now consider the
columns ending in junctions, the effect on the hook size is to create parts
that are ≡ 0(mod 4), but then the gap is > 4. Thus we have Göllnitz-Gordon
partitions ρ(π) of type 1, dilated by a factor of 2, and counted with weight
(−1)ν(π)b2h. This means if we take b = 1, the generating function is G(−q2),
with G defined by (4.1). The discussion we have presented now is for the
case where the Durfee square of π has a 2 at the bottom right. By similar
reasoning, it can be shown that when there is a 1 at the bottom right corner
of the Durfee square, then with the choice z = −1, the only surviving graphs
are those for which the hook sizes (except for the isolated 1 at the bottom
right of the square) are Göllnitz-Gordon partitions of type 2 dilated by a
factor of 2, and counted with weight (−1)ν(π)−1b2h Thus if we take b = 1, the
generating function in this case is −qH(−q2). So what we have given here is
a combinatorial derivation of the modular identity

(4.3)
(q; q2)∞

(−q2; q2)∞
= G(−q2)− qH(−q2).

Remarks: (i) By setting z = −1, b = 1 in (2.2), we get

(q; q2)∞
(−q2; q2)∞

=
∞∑
k=0

(−1)kq2k2 .
(q2; q4)k
(q4; q4)k

− q
∞∑
k=0

q2k2+4k.
(q2; q4)k
(q4; q4)k

(4.4) = G(−q2)− qH(−q2)
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which is an analytic derivation of the modular identity from (2.2). Note that
in (4.4) both sums have been made to start at k = 0 to connect with H(−q2),
whereas in (2.2), Σ1 starts at k = 1. What is important here is that (4.3) can
be derived purely combinatorially by discussing the collapse of the weights
under the sliding operation.

(ii) We need only z = −1 to induce a collapse of the weights, and can
keep b as a feee parameter. We chose b = 1 only to connect with the Göllnitz-
Gordon functions G(q) and H(q) as they were originally defined. If we keep
b as a free parameter when z = −1, then (2.2) simplifies to

(bq; q2)∞
(−q2; q2)∞

=
∞∑
k=0

(−1)kq2k2 .
(b2q2; q4)k
(q4; q4)k

− bq
∞∑
k=0

(−1)kq2k2+4k.
(b2q2; q4)k
(q4; q4)k

(4.5) =: G(−q2; b2)− bqH(−q2; b2),

The combinatorial arguments given above prove not only (4.4), but also (4.5).
(iii) The expression on the left hand side of (4.5) is a function of b and q.

The right hand side simultaneously provides a decomposition of this function
as an even function of both b and q and an odd function of b and q. This
bisection into the even and odd components yields the parity theorems stated
in this section connecting partitions in Po,d with the Göllnitz-Gordon parti-
tions. Next in Section 5, by using the Göllnitz-Gordon identities in (4.4), we
will deduce an interesting shifted partition theorem of Andrews [9]. Finally
in Section 6 we provide yet another approach to the general modular identity
(4.5) and present a finite version of it as well.

Parity results
By comparing the coefficients of q2n on both sides of (4.5) we get
Theorem 4:∑

π∈Po,d,σ(π)=2n

(−1)ν(π)bνo(π) = (−1)n
∑

π∈GG1,σ(π)=n

b2νe(π)

Similarly, by comparing coefficients of q2n+1 on both sides of (4.5) we
deduce

Theorem 5:∑
π∈Po,d,σ(π)=2n+1

(−1)ν(π)bνo(π) = −b(−1)n
∑

π∈GG2,σ(π)=n

b2νe(π)
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Let gg1(n) and gg2(n) denote the number of Göllnitz-Gordon partitions
of type 1 and 2 respectively. Also let pe(n) (resp. po(n)) denote the number
of partitions π ∈ Po,d of n with an even (resp. odd) number of parts. Then
with b = 1 in Theorems 4 and 5, we get

Corollary 1:
pe(2n)− po(2n) = (−1)ngg1(n)

Corollary 2:

pe(2n+ 1)− po(2n+ 1) = (−1)n+1gg2(n)

Corollaries 1 and 2 yield
Corollary 3:

(i) pe(m) ≥ po(m), if m ≡ 0, 3(mod 4)

(ii) po(m) ≥ pe(m), if m ≡ 1, 2(mod 4)

Remarks: (i) In the case of partitions into distinct parts, the parity split
of such partitions based on the number of parts, yields the pentagonal series.
This is to be compared with the parity split of partitions in which the even
parts do not repeat; by setting b = −1 in Lebesgue’s identity (1.5) we get
Gauss’ triangular numbers theorem which is on par with Euler’s pentagonal
numbers theorem. In contrast, the parity split of unrestricted partitions of
an integer does not lead to a lacunary series; instead we get partitions into
distinct odd parts. This is to be compared with the parity split of partitions
with non-repeating odd parts that we have discussed here, where we get the
Göllnitz-Gordon partitions instead of a lacunary series.

(ii) Note that in Corollaries 1 and 2 the parity split is on Po,d, and so one
may ask whether there is a result involving the parity split of the Göllnitz-
Gordon partitions themselves. The answer is yes, and this is obtained by
choosing b =

√
−1 in Theorems 4 and 5. Interpreting that combinatorially

we get the following:

Theorem 6: When m = 2n, and σ(π) = m, we have νo(π) is even, so∑
π∈Po,d,σ(π)=2n,νo(π)≡0(mod 4)

(−1)ν(π) −
∑

π∈Po,d,σ(π)=2n,νo(π)≡2(mod 4)

(−1)ν(π)

= (−1)n
∑

π∈GG1,σ(π)=n

(−1)νe(π)
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Theorem 7: When m = 2n+ 1, and σ(π) = m, we have νo(π) is odd, so∑
π∈Po,d,σ(π)=2n+1,νo(π)≡1(mod 4)

(−1)ν(π) −
∑

π∈Po,d,σ(π)=2n+1,νo(π)≡3(mod 4)

(−1)ν(π)

(−1)n+1
∑

π∈GG2,σ(π)=n

(−1)νe(π)

5. A shifted partition identity modulo 32 of Andrews

If we take the product forms of G(−q2) and H(−q2) given by (4.1) and
(4.2), and substitute them in (4.4), we get

(q; q2)∞
(−q2; q2)∞

(5.1)

=
1

(−q2; q16)∞(q8; q16)∞(−q14; q16)∞
− q

(−q6; q16)∞(q8; q16)∞(−q10; q16)∞
.

This can be rewritten as

1 =
(−q2; q2)∞

(q; q2)∞(−q2; q16)∞(q8; q16)∞(−q14; q16)∞

(5.2) − q(−q2; q2)∞
(q; q2)∞(−q6; q16)∞(q8; q16)∞(−q10; q16)∞

.

At this stage we use Euler’s trick to replace (−q2; q2)∞ in the numerator of
(5.2) by (q2; q4)∞ in the denominator to get

1 =
1

(q; q2)∞(q2; q4)∞(−q2; q16)∞(q8; q16)∞(−q14; q16)∞

− q

(q; q2)∞(q2; q4)∞(−q6; q16)∞(q8; q16)∞(−q10; q16)∞

=
∏

j>0 odd or j≡±4,±6,±8,±10(mod 32)

1

(1− qj)

(5.3) − q
∏

j>0, odd or j≡±2,±8,±12,±14(mod 32)

1

(1− qj)
.
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We now compare the coefficients of qn on both sides of (5.3) and note the
coefficient is 0 for n ≥ 1. This yields the following shifted partition theorem
of Andrews [9]:

Theorem A:
Let pS(n) denote the number of partitions of n with parts coming from the

set S given by S = {j ∈ Z|j > 0 is odd or j ≡ ±4,±6,±8, ±10(mod 32)}.
Let pT (n) denote the number of partitions of n with parts coming from the

set T given by T = {j ∈ Z|j > 0 is odd or j ≡ ±2,±8,±12,±14(mod 32)}.
Then

pS(n) = pT (n− 1).

Remarks:
(i) This was the first shifted partition identity to be stated in the litera-

ture. It was Andrews’ contribution to the American Mathematical Monthly
for the Ramanujan Centennial.

(ii) It is to be noted that only our proof of the modular relation (4.4)
was combinatorial. From there we used the product form of the Göllnitz-
Gordon identities to arrive at (5.3). So our proof of Theorem A is only
partly combinatorial but different from Andrews’ proof.

(iii) In [2], a modular relation close to (4.4) for the Göllnitz-Gordon func-
tions was used to give a new proof of the Göllnitz-Gordon identities. In view
of this, we will present in the next section a different and direct proof of the
general modular identity (4.5).

6. Alternate approach to the modular identity with a parameter

We will now discuss an alternate approach to the modular identity (4.5)
using ideas in our earlier work [1].

A simple direct way to determine the even and odd parts of the expression
on the left hand side of (4.5) is to expand (bq; q2)∞ as an infinite series, and
extract the even and odd parts from this. More precisely, start with

(6.1)
(bq; q2)∞

(−q2; q2)∞
=

1

(−q2; q2)∞

∞∑
k=0

(−1)kbkqk
2

(q2; q2)k
.

It is clear from the expansion in (6.1) that the even and odd parts are given
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by setting the index k to be even and odd. That is

(6.2)
(bq; q2)∞

(−q2; q2)∞
=

1

(−q2; q2)∞
{
∞∑
k=0

b2kq4k2

(q2; q2)2k

−
∞∑
k=0

b2k+1q4k2+4k+1

(q2; q2)2k+1

}

provides a simultaneous decomposition into even and odd functions of both
b and z. From (6.2) we see that proving (4.5) is equivalent to showing

(6.3)
1

(−q2; q2)∞

∞∑
k=0

b2kq4k2

(q2; q2)2k

=
∞∑
`=0

(−1)`q2`2(b2q2; q4)`
(q4; q4)`

.

and

(6.4)
1

(−q2; q2)∞

∞∑
k=0

b2kq4k2+4k

(q2; q2)2k+1

=
∞∑
`=0

(−1)`q2`2+4`(b2q2; q4)`
(q4; q4)`

.

If in (6.3) and (6.4) we replace the (−q2; q2)∞ in the denominator on the
left by (q2; q4)∞ in the numerator, and then move it inside the summation to
absorb certain factors (q2; q4)k in the denominator, then (6.3) and (6.4) can
be rewritten as

(6.5)
∞∑
k=0

b2kq4k2(q4k+2; q4)∞
(q4; q4)k

=
∞∑
`=0

(−1)`q2`2(b2q2; q4)`
(q4; q4)`

,

and

(6.6)
∞∑
k=0

b2kq4k2+4k(q4k+6; q4)∞
(q4; q4)k

=
∞∑
`=0

(−1)`q2`2+4`(b2q2; q4)`
(q4; q4)`

.

Identities (6.5) and (6.6) can be proved easily by expanding the factor
(b2q2; q4)` in the numerator on the right by the q-binomial theorem to get a
double series, and reversing the order of summation to get the series on the
left. We note that (6.5) and (6.6) are consequences of the following Lemma
that was used in [1] for certain applicatons:

Transformation Lemma:

∞∑
k=0

(ab)kq2k2(−aq2k+1; q2)∞
(q2; q2)k

=
∞∑
`=0

a`q`
2
(−bq; q2)`

(q2; q2)`
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Remarks:
(i) The series on the right in the Lemma is a two parameter refinement

of the Göllnitz-Gordon function G(q). Owing to the presence of the second
parameter a, the replacement a 7→ aq2 gives a two parameter refinement
of the second Göllnitz-Gordon function H(q), and the replacement a 7→ aq
yields a refinement of the Second Little Göllnitz Series. Similarly a 7→ aq,
b 7→ bq−2 yields the First Göllnitz-Gordon Series. The Little Göllnitz-Gordon
identities are dilated versions of the Lebesgue identity (1.5).

(ii) Identity (6.5) is a special case of the Lemma with the choices

q 7→ −q2, a = 1, and b 7→ b2.

Identity (6.6) follows from the Duality Lemma by the choices

q 7→ −q2, a = q4 and b 7→ b2.

(iii) We close this section by pointing out that there is an interesting finite
version of the Transformation Lemma which can be easily proved either q-
theoretically or combinatorially:

Finite Transformation Lemma: For arbitrary integers m,n, we have

m∑
k=0

(ab)kq2k2
[
m
k

]
q2

(−aq2k+1; q2)n =
m+n∑
`=0

a`q`
2
∑̀
k=0

bkqk
2

[
m
k

]
q2

[
n

`− k

]
q2
.

The Transformation Lemma follows from the Finite Transformation Lemma
by letting m,n → ∞. In view of Remark (i) above, a finite version of
Lebesgue’s identity can be obtained by replacing a 7→ aq, b 7→ bq and q2 7→ q
in that order in the Finite Transformation Lemma.

7. Basis partitions in Po,d and their signature

Our goal here is to describe some new results on basis partitions for par-
titions with non-repeating odd parts, but we need to give as background and
motivation, certain results on basis partitions within the set of unrestricted
partitions.

Let an unrestricted partition π; b1 + b2 + ... + bν be represented as an
ordinary Ferrers graph, and let π∗ : c1 + c2 + ...+ cb1 be its conjugate. If this
graph has a k × k Durfee square, then its successive rank vector is given by
r: (r1, r2, ..., rk), where ri = bi − ci, for 1 ≤ i ≤ k. Given a successive rank

17



vector r, consider the partition π which has r as its successive rank vector,
and with σ(π) minimal. Such a partition is called a basis partition and they
were first considered by Gupta [14]. Subsequently, Nolan, Savage and Wilf
[17] showed that if b(n) denotes the number of basis partitions of n, then the
generating function is

(7.1)
∞∑
n=0

b(n)qn =
∞∑
k=0

qk
2
(−q)k

(q)k.

Hirschhorn [15] then interpreted (7.1) as a weighted partition identity con-
necting b(n) with the Rogers-Ramanujan partitions of n with weights as
powers of 2.

Basis partitions are characterized by the property that no row below the
Durfee square is equal to any column to the right of the Durfee square in the
ordinary Ferrers graph. Thus there is no redundancy in a basis partition.
Owing to this property, we noticed in 2005 (see [5]) that

(7.2)
∞∑
k=0

qk
2
(−zq)k
(q)k

=:
∑
n,j

b(n; j)zjqn,

is the generating function of b(n; j), the number of basis partitions of n
with signature j, where by the signature of a basis partition π, we mean the
number of different parts in πb, the portion of π below its Durfee square. This
observation on the signature immediately yields the following parity result
as a consequence of (7.2) as noted in [5]:

Theorem 8: Let be(n) (resp. bo(n)) denote the number of basis partitions
of n with even (resp. odd) signature. Then

be(n)− bo(n) = 1, if n is a perfect square, and 0 otherwise.

In addition, the signature enables us [5] to refine Hirschhorn’s weighted
partition theorem by replacing his powers of 2 weights by powers of (1 + z)
(see Theorem 4 of [5]).

In [5] we interpreted (7.2) in terms of the signature because we constructed
basis partitions from Rogers-Ramanujan partitions by means of the sliding
operation. Recently Andrews [10] has obtained an analytic expression for
the series in (7.2) for all z which yields the first Rogers-Ramanujan identity
when z = 0. We now describe some new results on basis partitions defined in
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terms of the 2-modular Ferrers graphs of partitions in Po,d. As we stressed at
the beginning, by Ferrers graphs we mean only such 2-modular graphs. That
is why in this section we referred to the graphs of unrestricted partitions as
ordinary Ferrers graphs, which are not 2-modular graphs.

Given a 2-modular Ferrers graph of π ∈ Po,d with a k × k Durfee square,
we define its successive rank vector to be r=(r1, r2, ..., rk), where

(7.3) ri = (size of the i-th row) − (size of the i-th column).

The size of a row (resp. column) was defined in Section 2 as the sum of the
entries at the nodes in that row (resp. column), in contrast to the length of
a row or column which is simply the number of nodes in it*. By a minimal
basis partition µ ∈ Po,d, we mean a partition for which σ(µ) is minimal with
respect to a given successive rank vector. It is to be noted that any vector
(r1, r2, ..., rk) of integers can occur as a successive rank vector r of a partition
π ∈ Po,d. A minimal basis partition corresponding to a given successive rank
vector r can be constructed in exactly the same way as the construction of a
basis partition for ordinary (unrestricted) partitions, but there are differences
in the sequence of steps in the construction which is described in [5]. This
construction shows that minimal basis partitions are characterized by the
property that no row (in the 2-modular graph) below the Durfee square can
be equal (in length) to a column to the right of the Durfee square, and if
the last entry rk = 0, then the right hand bottom entry in the Durfee square
has to be 1. Although minimal basis partitions are defined by minimality in
terms of size, this characterization is in terms of length.

We now define a basis partition in Po,d by the property that no row below
the Durfee square is equal (in size) to any column to the right of the Durfee
square. Thus there is no redundancy (in this sense) in a basis partition.
Notice that 2,2,1 as a row is not equal (in size) to 2,2,2 as a column, but
both are of equal length. Thus in a basis partition one could have a row 2,
2, 1 below the Durfee square and a column 2,2,2, to the right of the Durfee
square, but this is not permissible in a minimal basis partition. Thus while
every minimal basis partition is a basis partition, the converse is not true. In
the case of unrestricted partitions and their ordinary Ferrers graphs, there is
no distinction between minimal basis partitions and basis partitions.

——————-
*Berkovich and Garvan [11] have investigated the rank of partitions in

Po,d using 2-modular diagrams, but with rank defined as the length of the
first row minus the length of the first column.
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The procedure to construct all basis partitions from minimal basis par-
titions is discussed in [5]. We now consider the generating function of basis
partitions and minimal basis partitions, and as a consequence deduce some
nice partity results. To facilitate this discussion, we first note that every
primary partition is a minimal basis partition and hence a basis partition
because the portion below the Durfee square is empty. Also no secondary
partition can be a basis partition, and hence cannot be a minimal basis par-
tition as well. Using the sliding operation, basis partitions can be generated
nicely from primary partitions. In the case of even columns, the complete
block of even columns of a given length has to be slid down. So the generating
function of basis partitions in Po,d is

(7.4)
∞∑
k=0

q2k2(−q2; q2)k
(q2; q2)k

.(−2q; q2)k +
∞∑
k=1

q2k2−1(−q2; q2)k−1

(q2; q2)k−1

.(−2q; q2)k−1.

The reason for the presence of −2q in the numerator is because given an odd
row (or column), of a specific size, we have exactly two choices of having it as
a row or as a column, but not both because in a basis partition there cannot
be a redundancy. In fact we can insert parameter z and b in (7.4) with the
power of z being the signature of a basis partition in Po,d which we define
as the number of different parts (even or odd) below the Durfee square, and
the power of b being the number of odd parts. More precisely let b(n; k, j)
denote the number of basis partitions β ∈ Po.d of n with signature k and
νo(β) = j. We then have∑

n,k,j

b(n; k, j)bjzkqn =
∞∑
k=0

q2k2(−zq2; q2)k(−b(1 + z)q; q2)k
(q2; q2)k

(7.5) +
∞∑
k=1

bq2k2−1(−zq2; q2)k−1(−b(1 + z)q; q2)k−1

(q2; q2)k−1

.

Analogous to Hirschhorn’s result [15] that the Rogers-Ramanujan par-
titions enumerated with weights which are powers 2 yield the number of
basis partitions, we have a similar weighted partition identity here connect-
ing special partitions with basis partitions, and a refinement of it involving
the signature. To facilitate its statement, let us rewrite the gap conditions
for special partitions π : b1 + b2 + ...+ bk as

(7.6) bi − bi+1 ≥ m(bi+1) := 4 + [bi+1]2, for 1 ≤ i ≤ k − 1,
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where [n]2 = 0 if n in even, = 1 if n is odd. Thus m(bi+1) is the minimal
permissible value for the difference bi − bi+1 given in terms of the parity of
bi+1. We now have

Theorem 9: For a special partition π : b1 + b2 + ...+ bk let its weight be
w(π) = 2`, where

` = {number of gaps bi − bi+1 > m(bi+1)}

(7.7) + {number of gaps bi − bi+1 > m(bi+1) + 2,when bi is odd},

with the convention bk+1 = −2. If b(n) is the number of basis partitions of n
in Po,d, then

(7.8) b(n) =
∑

π∈Ψ,σ(π)=n

w(π).

More generally, if b(n, j) is the number of basis partitions in Po,d with signa-
ture j, then

(7.9)
∑
j

b(n; j)zj =
∑

π∈Ψ,σ(π)=n

wz(π),

where wz(π) = (1 + z)`, with ` defined as above.
Note that when z = −1 the series on the left in (7.5) collapses to

∞∑
k=0

q2k2 + b
∞∑
k=1

q2k2−1.

This yields a nice parity result valid with a parameter b. To state this, let

(7.10) Be(n, b) =
∑

β∈Po,d,σ(β)=n,ψ(β)= even

bνo(β),

and

(7.11) Bo(n, b) =
∑

β∈Po,d,σ(β)=n,ψ(β)= odd

bνo(β).

In (7.10) and (7.11) the sums are over basis partitions β of n, and ψ(β) is the
signature of β. Then the interpretation of the collapse of (7.5) when z = −1
is given by
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Theorem 10:

Be(n, b)−Bo(n, b) = 1 if n = 2k2, b if n = 2k2 − 1, and 0 otherwise.

Compared to Theorem 8, in Theorem 10 we get lacunarity even with a
parameter b.

The generating function of minimal basis partitions can also be deter-
mined. To facilitate this discussion, we will refer to the situtation where the
Durfee square has a 1 in it as Case 1, and the situation where the Durfee
square has all twos as Case 2. Note that in Case 1 with a k×k Durfee square,
for a certain j between 1 and k − 1, if a collection of parts all equal to 2j
are represented as a set of columns to the right of the Durfee square or as a
set of rows below the Durfee square, and if the integer 2j − 1 is to included
in the graph, then it has to be placed alongside the collection of 2j. There
is no choice as to where to place the 2j − 1 if the 2j occur. But if 2j does
not occur, we could have 2j−1 represented either as a row below the Durfee
square or as a column to the right of the square, and thus have two choices.
With regard to Case 2, the above observations all hold for 1 ≤ j ≤ k− 1. In
addition, we need to note that the last entry in the successive rank vector
has to be non-zero, thereby forcing the graph to have either a row of length
k below the Durfee square or a column of length k to the right of the square,
but not both. This row or column of length k could represent either 2k − 1
or 2k. With these observations, we can modify (7.4) and write down the
generating function of bm(n), the number of minimal basis partitions of n:

∞∑
n=0

bm(n)qn = 1 +
∞∑
k=1

q2k2−1

k−1∏
j=1

{1 + 2q2j−1 +
2q2j(1 + q2j−1)

(1− q2j)
}

(7.12) +
∞∑
k=1

q2k2
k−1∏
j=1

{1+2q2j−1+
2q2j(1 + q2j−1)

(1− q2j)
}.(2q2k−1+

2q2k(1 + q2k−1)

(1− q2k)
).

As in the case of the generating function of basis partitions, we can refine
(7.12), but here it is best to keep track of the number of different lengths
below the Durfee square, which we call as `-signature, which we will keep
track by a parameter ζ. Thus we have the following refinement of (7.12):
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∑
n,j

bm(n; j)ζjqn = 1+
∞∑
k=1

q2k2−1

k−1∏
j=1

{1+(1+ζ)q2j−1+
(1 + ζ)q2j(1 + q2j−1)

(1− q2j)
}+

(7.13)
∞∑
k=1

q2k2
k−1∏
j=1

{1+(1+ζ)q2j−1+
(1 + ζ)q2j(1 + q2j−1)

(1− q2j)
}.[(1+ζ)q2k−1+

(1 + ζ)q2k(1 + q2k−1)

(1− q2k)
)],

where bm(n; j), the number of minimal basis partitions of n with `-signature
equal to j.

Finally we note that (7.13) collapses to

1 +
∞∑
k=1

q2k2−1

when ζ = −1. To interpret this collapse, we denote by λ(µ) the `-signature
of a minimal basis partition µ, and by
(7.14)

Me(n) =
∑

µ∈Po,d,σ(µ)=n,λ(µ)= even

1, and Mo(n) =
∑

µ∈Po,d,σ(µ)=n,λ(µ)= odd

1.

Then the collapse of (7.13) when z = −1 has the following interpretation:
Theorem 11:

Me(n)−Mo(n) = 1 if n = 2k2 − 1, and 0 otherwise.

A more detailed discussion of the ideas in this section with proofs can be
found in [5].
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