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Abstract.  We discuss three partial theta identities involving the squares and cast
them in the form of weighted partition identities. The first partial theta identity is
due to Ramanujan, and the second due to Andrews. The third is a special case of the
famous Rogers-Fine identity. We provide here a description of our combinatorial and
analytic approach to all three identities, as well as a comparison of the combinatorial
proofs of Berndt-Kim-Yee of Ramanujan’s identity and of Chen-Liu of two of our
weighted partition theorems. We establish duals and companions of a partition theorem
of Berndt-Kim-Yee.
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1. Introduction

Euler, the founder of the theory of partitions and g-series, established a number
of beautiful results, one of the most fundamental being the Pentagonal Numbers
Theorem:

[Ta-am= > (10 (L.1)
m=1 k=—00

Our goal here is to discuss, both analytically and combinatorially, the following three
remarkable partial theta identities:

- (_a)nqn(n+l)/2(_Q)n—l G kK2
1+n§ @), —Z(:)( a)‘q", (1.2)
o0 [e.e]
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n=0 k=0
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F=Lb,~biq) = 1+2> (=D)p*g", (1.4)
k=1
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where

o0

flabcig)y=1+> (1 — a)(abg)n-1bc"q"
n=1

(bg)n

o0 2
bt a™ (1 — b _ (1 = ab 2n
14> c"q" (1 — a)(abq)n-1(acq)n—1 (1 — abeqg™) (15)
il (bg)n(cq)n
In (1.1)—(1.5) and in what follows, we adopt the standard notation

n—1 '

(@ = (a; q)n = [ [(1 —ag?), (1.6)
j=0

CXD .

(@)oo = (a; @)oo = lim (a; @)y = [ [(1 —ag’), when gl <1.  (1.7)

n—oo

j=0

When the base is ¢, then as in (1.6) and (1.7) we simply write (a), and (@)oo, but
when the base is anything other than g, it will always be displayed as in (1.2).

Identity (1.2) is in Ramanujan’s Lost Notebook ([14], p. 38). Identity (1.3) is due to
Andrews who had previously established the case a = —1 [5,4], but then he noticed
that the general identity (1.3) with the parameter a holds when he saw my partition
theoretic interpretation of (1.2) — see Theorem 1 below. Identity (1.5) is my variant
[2] of the famous Rogers-Fine identity (see (8.6) in Section 8). I was motivated to
investigate (1.5) since it was so naturally linked to the partition function. Clearly (1.4)
is a special case of (1.5). One reason the three identities are so interesting is because
lacunarity holds even with a parameter.

In earlier papers [1-3], we investigated all three partial theta series in detail. More
specifically, in [1], we proved (1.2) g-theoretically and provided a weighted partition
interpretation (see Theorem 1 in Section 2). In [3] we proved (1.3) and related identi-
ties g-theoretically, interpreted (1.3) as a weighted partition theorem (see Theorem 3
in section 2) and the links with Theorem 1. In [2] we proved (1.5) combinatorially and
from this showed that (1.4) is equal to a weighted partition theorem (see Theorem 4
in Section 2) for which we supplied a new combinatorial proof.

The most elegant and famous proof of (1.1) is by Fabian Franklin (see [4]) through
his fundamental involution on partitions into distinct parts. Chen and Liu [10] have
recently constructed an involution which simultaneously yields a bijective proof of
both our Theorems 1 and 3 and hence of (1.2) and (1.3). This construction of Chen
and Liu is quite intricate and is described in section 7.

In the course of providing combinatorial proofs of several identities in Ramanujan’s
Lost Notebook, Berndt, Kim, and Yee [7], supply a bijective proof of (1.2) by inter-
preting it in terms of certain vector partitions. The earlier proof of (1.2) in ([6], p. 25)
is analytic. Among all the combinatorial proofs given in [7], the most difficult is that
of (1.2). It is noted in [7] that the combinatorial proof of (1.2) does not yield a bijective
proof of our Theorem 1, which is the partition version of (1.2). This is what has been
accomplished by Chen and Liu [10].
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The purpose of this paper is provide a survey of all this recent work on the three
partial theta series and to compare the proofs — both g-theoretic and combinatorial.
In doing so, we shall simplify the approach of Berndt, Kim and Yee, and in that
process obtain some new companions and duals of a certain result in [7]. With regard
to (1.4), we point out that certain partial theta series connected with the Rogers-Fine
identity have played a role in recent important work on Ramanujan’s mock theta func-
tions [9]. This is why we included a discussion of (1.4) here, besides the reason that
the partial theta series (1.4) also deals with the squares and has a natural partition
interpretation.

In the next section we state the partition theoretic interpretation of the three
partial theta identities. For this purpose, we close this section with some notation for
partitions.

Throughout we shall use the following notation for various statistics involving parti-
tions: A partition of an integer is a representation of that integer as a sum of positive
integers, two such representations considered the same if they differ only in the order
of the parts (= summands). For any partition 7, we denote by

o (r) = the sum of the parts of 7,
A(r) = the largest part of 7,
{(7) = the least part of 7,

v (7 ) = the number of parts of 7.
If we wish to count the number of parts with restrictions, we denote this by a subscript.
For example v, (7) (resp. v,(7)) denote the number of even (resp. odd) parts of x.

Also, vg(m) will denote the number of different parts of z . Finally we denote by Py ,
the set of partitions into distinct parts with smallest part odd.

2. Partition versions of the identities

Euler’s pentagonal series identity (1.1) is equivalent to the following partition
theorem:

Theorem E. Let Q. (n) (resp. Q,(n)) denote the number of partitions of n into distinct

parts, and having an even (resp. odd) number of parts. Then

3k —k
2 b

0.(n) — Qo(n) = (=DF if n= and 0, otherwise. 2.1)
To state the partition theoretic version of (1.2), we define certain weights on
partitions.
Consider a partition # = by + by + --- + b,, with b, being odd. With the con-
vention that b, 1 = 0, define the weight of the i — th gap between b; and b; 4] to be
w; = w;(m), where

wi =a’%, 9§ = the least integer > (b; — bj11)/2. (2.2)
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The weight w4 () of the partition 7 is defined multiplicatively as
%
oa(@) = (=" [ . (23)
i=1

With these weights, we have Ramanujan’s identity to be equivalent to:

Theorem 1.

Z wa(m) = (—a)k, if n= kz, and 0, otherwise.

nePyo,0(m)=n

Theorem 1 was proved in [1] and we will recall that proof here in Section 3 since
the ideas will be used in subsequent sections. It has the following striking special case
when a = 1:

Theorem 2. Let R, (n) (resp. R,(n)) denote the number of partitions of n into distinct
parts such that the least part is odd, and the number of parts is even (resp. odd). Then

Re(n) — Ry(n) = (=DX, if n=k> and 0, otherwise.

Theorem 2 is on par with Euler’s Pentagonal Numbers Theorem. Despite its
simplicity and elegance, it somehow escaped attention for so many years. Fine
actually came quite close to Theorem 2 because in his famous paper [11] he noted that

pd.o(n) is odd precisely when n =k, (2.4)

which is a consequence of Theorem 2 because pg,(n) = R.(n) + R,(n). In a
comprehensive survey that was written in 2003 but published in 2006, Pak [13] raised
the problem (see [13], p. 35) of finding an involution that would establish (2.4).
In 2004, Bessenrodt and Pak [8] found such an involution which actually established
Theorem 2 in a stronger form that is equivalent to our Theorem 3 below, but their
involution does not yield Theorem 1.

At first glance, Andrews’ identity (1.3) seems to be dealing with partitions
into distinct parts with smallest part even, but it is really dealing with partitions
m € P4, namely those with smallest part odd, as shown in [2]. More precisely, (1.3)
is equivalent to:

Theorem 3. For a partition & € Py, define its weight by
wa(r) = (=1)"@g @) (2.5)
Then

Z wa(m) = (—a)k, if n=k> and O, otherwise.

”epd,mo'(”):n

It is remarkable that even though the weights in (2.3) and (2.5) are different, their
sums over the partitions of n in Py ,, are identical.
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The combinatorial interpretation of (1.4) involves unrestricted partitions counted
with weights, as given by the following result:

Theorem 4. For each partition n, let its weight be
w () = (—1)"@2va® pr @+, (2.6)

Then
Z w(n):(—l)kak.Z, if n==k> and 0, otherwise.

o(m)=n

Theorem 4 was proved combinatorially in [2].

We now quickly demonstrate, why Theorems 1, 3 and 4 are combinatorial versions
of identities (1.2)—(1.4). But first we look at the special case a = 1 in (1.2) and its
relationship with Theorem 2.

The generating function of partitions into n distinct parts is

g+ /2
(@)n

In (2.7), we view n(n—+1)/2 as representing the minimal partition into n distinct parts,
namely 1 + 2 4 - - - 4+ n. If we represent this minimal partition by a triangular Ferrers
graph, then we view the denominator (g), in (2.7) as imbedding columns of length j,
for 1 < j < n into this graph of the minimal partition to generate all partitions into n
distinct parts. When a = 1, identity (1.2) reduces to:

(2.7)

( l)n n(n+1)/2 0

1 —)kgk. 2.8
+Z(q)n TP S &9

The main difference between (2.7) and the n-th summand on the left in (2.8) is that
the last factor (1 — ¢™) in the denominator of (2.7) has been replaced by (1 — g*") in
(2.8). What this means is that in the imbedding of columns of length j into the graph
of the minimal partition, the columns of length n alone are imbedded in pairs. This
means that
(_ l)nqn(n+1)/2
(@)n—1(1 = g*7)
is the generating function of partitions into n distinct parts with smallest part odd.
Once this observation is made, Theorem 2 is clearly seen to be the combinatorial
version of (2.8).
For the case of general a in (1.2), we argue a bit differently. First we view

(2.9)

_A\n,nn+1)/2
% (2.10)

(aq”: q*)n
as the generating function of partitions obtained by imbedding every column of
length j, for 1 < j < nin pairs, thereby creating partitions with smallest part odd, and
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the gap between consecutive parts being odd. These partitions 7’ are counted with
weight wa (z”), with the weight as in (2.3). Finally, the factor (—g),—1 can be viewed
as imbedding at most one column of length j for each 1 < j <n — 1. These imbed-
dings, whenever they take place, convert the gap between the parts of 7’ from odd to
even, but the smallest part remains (odd) and unchanged with this imbedding. Thus
all partitions 7 into n distinct parts with smallest part odd are generated this way. Not
that this imbedding does not change the weight. This shows that Theorem 1 is the
combinatorial version of (1.2).

Andrews’ identity (1.3) appears to be the generating function for partitions into
distinct parts with smallest part even. But then since the series begins with n = 0,
Andrews does allow 0 as a part, and this is how he stated in [5] the partition version
of (1.2) whena = —1:

Theorem 5. Let ¢.(n) (resp. £,(n)) denote the number of partitions of n into distinct
non-negative parts with smallest part even, and having an even (resp. odd) number of
even parts. Then

ge(n)—e,(n)=1, if n= kz, and 0, otherwise.

Theorem 5 is not the same as our Theorem 3, but equivalent to it as we now demon-
strate: If we have a partition 7’ of n into distinct parts with smallest part even, then
either the smallest part is 0, or it is positive. If the smallest part is even and positive,
we can always add 0 to it to get another partition 7" of n of the Andrews type but with
opposite parity for the number of even parts. Thus the contribution of these partitions
to g.(n) — &,(n) would be 0. Now every partition of n with smallest part 0 and second
smallest part even is counted as 7”. So we need only consider partitions of n of the
Andrews type with O as the smallest part and second smallest part odd. If we remove
0 from such a partition, we get a regular partition of n into distinct parts with smallest
part odd. Thus the only partitions that contribute to the difference ¢.(n) — &,(n) in
Theorem 4 are the partitions of n into distinct parts with smallest part odd. Now in
any partition, the parity of the number of odd parts is the parity of n. Thus for any
partition 7,

(_l)v(ﬂ) — (_1)‘7(”)(_1)‘)@(”)‘

This explains the equivalence of Theorems 3 and 5 and the presence of (—1)¥ in
Theorem 2.

We now show g-theoretically why Theorem 3 is equivalent to (1.3).

Suppose we define w, () as in (2.5) for partitions z in the set P; of ALL partitions
into distinct parts. Then it follows that

D wu@) = (0% 0")x(aq; oo (2.11)

w€Py;0(r)>0

Note that the summand corresponding to n = 0 on the left in (1.3) is exactly the
product on the right in (2.11), and so is the generating function of ALL partitions
7 into distinct parts counted with weight w, (7). Now denote by P, the set of all
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partitions into distinct parts with smallest part even. If these partitions are counted
with weight w, (7 ), then their generating function is

0
> wam =D =" @ 4D e@q” s 4P (2.12)
mePyeio(n)>1 n=0

Observe that the sum in (1.3) for n > 1 is the negative of the expression on the right
in (2.12). This means that on the left in (1.3) the generating function of the partitions
in P4, with the same weights are subtracted from the weighted generating function
of ALL partitions in P4. Thus (1.3) is really the identity

> )" = (—a)fq". (2.13)

n€Py ;0 (m)=0 k=0
The interpretation of (2.13) is clearly Theorem 3.

Remarks. In the same paper [11] where Fine noted (2.4), he established two beautiful
companions to Theorem E. To motivate Fine’s results, we note that another of Euler’s
simple but fundamental result on partitions is:

Euler’s Theorem. The number of partitions of an integer n into odd parts is equal to
the number of partitions of n into distinct parts.

There is also the fundamental duality connecting the largest part of a partition and
the number of parts by conjugation of Ferrers graphs. If we keep Euler’s theorem and
this duality in mind, we can better appreciate the following two results of Fine:

Theorem F. Ler Q,(n) denote the number of partitions of n into distinct parts such
that the largest part is = a(mod 2), a = 0, 1.

Let Qj(n) denote the number of partitions of n into odd parts such the largest part
is=b(mod 4), b =1, 3.

Then
Qo(n) — Q1(n) = (—=1)"{Q7(n) — O3(n)} (2.14)
and
3k +k
Qo) — 1t =1, if n=""1, k=0,
2 _
Qo(n) — Q1(n) =—1, if n= o 5 k, k>0, and (2.15)

Qo(n) — Q1(n) =0, otherwise.
In [11] Fine stated the analytic versions of these results, namely

n,2n—1 0
1+z< D (~qhro1g” =1 +z( T W L z aebr2
(=a:9%m =
(2.16)
The series on the right in (2.16) is neither a theta series nor a partial theta series; it is
a false theta series.
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In Ramanujan’s Lost Notebook the following two identities may be found
([14], p. 31):

n

o0 0 0
q 2 2
2 — E q12k +k(1 _ q22k+11) + q E q12k +7k(1 _ q10k+5), (217)
= COm (T k=0

and

00
n=0

n

o o
q _ Zq12k2+5k(1 . q14k+7) +qzzq12k2+11k(1 . q2k+1)' (2.18)
_ (_Q)Zn—H s

k=0

If we replace ¢ by q2 in (2.17) and (2.18), then the left hand sides are actually

Z( p qz) _ S i0ien - g5emie
n=0
and - , N
> o = Qi@+ )~ 05en+ g™
n=0 ’ " n=0

Thus Fine’s results are implicit in Ramanujan’s Lost Notebook.

It is to be noted that Fine’s results deal with the parity split of the largest part.
In contrast, the emphasis in (1.2), (1.3), and in Theorems 1, 2, 3, and 5, is on the parity
of the smallest part.

In [1] and [3], we gave g-theoretic proofs of (1.2) and (1.3) and they will be recalled
in the next section, since this will be relevant in later sections. To understand why
Theorem 4 is equivalent to (1.4), we need to combinatorially interpret (1.5), and so
this is postponed to the last section.

3. g-hypergeometric proofs

We begin with the proof of (1.2).
One version of the g-binomial theorem is

_Z”[’”J‘l} , (3.1)
= q

where the g-binomial coefficients are defined by

i @i
3.2
uq @@ G2

If we replace ¢ — g2 in (3.1) and substitute the resulting expansion of 1/(ag?; g%),
into the left hand of (1.2), then we get

o0 n n(n+1)/20_ o P
Z ( Cl) q : ( C])n—l _ Z( a)n Tn( q)n_l Zafqu |:l’l +] 1:| ,
Jj=0 2

o (@q*; q*)n j
(3.3)

(aq Dn
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where Ty = k(k + 1)/2 is the k-th triangular number. In view of (3.2), we may rewrite
(3.3) as
i (—a)'q" "2 (=) i yig T Z alq® (g% qPnrj1
p— (@g% q*)n o =@kha); @

(3.4)

Now set m = n + j to convert (3.4) to

e O L

X Nn nn+1)/2/_ 0
Z ( Cl) q ' ( Q)n—l _ Z(_a)m(qz; qz)m—l Z
m=1 j=

i (@q?; q*)n “ (@%aD); (@Dm-j-1
(3.5
Thus from (3.5) we see that proving (1.2) is equivalent to establishing
-1 Cy ) 2
LA L B (3.6)
= @5a); @Dn-j-r (@354
At this stage we note that
g
. (3.7)
(4% gHm-1

is the generating function of partitions into m distinct odd parts with smallest
part 1. This is realized by arguing exactly as we did in (2.7) and (2.8): We view

= 1434 .-+ (2m — 1) as the minimal partition into m distinct odd parts.
We view 1/(g%; g*)m—_1 as a Ferrers graph whose columns have 2 at every node and
the lengths of the columns being < (m — 1). If we imbed these columns into the
minimal partition, we get all partitions into m distinct odd parts, but the smallest part
remains as 1.

With this partition interpretation of the expression in (3.7) we see that

et qum2
D o =220 ). (3.8)
= (@% q)m-1
m=1
At this stage we use a trick, namely the identity

2q(—2q°; qz)oo( 20% 400 29(—29P) o0
(—24%: %) o C(—2¢% 4P’

24(=24% ¢*)oo = (3.9)
The term zg(—zg?%)so is the generating function of partitions into distinct parts with
smallest part 1. The well known expansion of (—zq)o, the generating function of
partitions into distinct parts is

Xk gklktD)/2

(2o = ) —F (3.10)
;Z(; (@)n

Thus arguing as we did to get (3.8), we now have

2q(—2¢") o0 = Z

ZqTi

3.11
@ G0
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The term 1/(—zg?; g%)oo is the generating function of partitions z into even parts
counted with weight (—z)"®). Using the well known expansion

1 0 ann
= (3.12)
9o =5 (@n
and the replacement ¢ > g2, z — —z in (3.12), we have
1 < (—1)/zg¥
—_— = —_—. 3.13
(—24% 4o Z:‘) (g% %), G

Thus (3.11), (3.13), (3.8) and (3.9) yield

— zlqT (=1)/zi g%
—20°: 4% oo = . (3.14
Z(61 qz) Stz {lzll(q)z 1} jz(:) @, [0

Finally by comparing the coefficients of z” on the left hand side and the right hand
side of (3.14), we get (3.6) and this proves (1.2).
Next we recall the proof of (1.3) in [3]. For this we will utilize (3.10) to expand the

(ag®™t1; ¢%)oo term in (1.3) by replacing g — ¢ and taking z = ag?”" in (3.10). This
gives

o an, 2. 2 Mtl, 2 o an, 2. 2 (—1)kakgk*+2kn
> a7 (@ D)oo(ag™ 4P = D4 @™ g )OOZ#
n=0 n=0 = @

(—Dfakgd & 2(k+1) [, 2042, 2
Z Zq @4

(g% qz)k ~
(3.15)

If we compare the coefficients of aF on the right hand sides of (1.3) and (3.15), we see
that to prove (1.3), we need to show that

o0
P R R o N R TS (3.16)
n=0

Replace g2 by ¢ in (3.16) and rewrite it in equivalent form as

> " (" N = (g (3.17)

n=0
To realize (3.17), divide both sides by (g)oo to rewrite it as
2 g+ 1

o (@)n _(qk+1)oo

(3.18)

Note that by setting z = qk in (3.12) we get (3.18) and this proves (1.3).
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Remark. The proof given above is that of (1.3) which we have shown to have
Theorem 3 as its partition interpretation because the partitions in Py, are counted
with weight 0, which is the redundant part of (1.3). If we wish to write down a
g-hypergeometric identity that represents Theorem 3 without any redundancy, then it
is

0 o

D> —ag” (@ 4P olag™ s ¢Poo = Z(—a)quz- (3.19)

n=1 —

In [3] we gave a direct proof of (3.19) and discussed some of its consequences.

4. A companion to Ramanujan’s identity

Our proof of (1.2) made use of the trick in (3.9) to rewrite (—zg>; g%)oo suitably.
We now ask what happens if we employ the same trick on (—zg; g%)oo, Use an expan-
sion like (3.10) as the starting point, and work backwards from it? More precisely,
start with

(—245 ") oo = Z T qz)m (4.1)

which we have already seen in (3.7). Analogous to (3.9), by employing the same trick,
and using expansions (3.10) and (3.13), we get

(=29)o0 5 24" (=1)/z/q?
(—24: 4" )o0 = ——5—5— ENCE))
R R Z @) Z (4% qz)

From here we work backwards.
By comparing the coefficients of z”* on the right hand sides of (4.1) and (4.2), we get

m2

i(—l)"q“ a4
“(q%9)); @Dm-j @ 4%)m

which is equivalent to
n \m . 2
Z(—I)J[ ] gt (= q)m—j = 4" (4.3)
=0 J g2

upon multiplying both sides by (¢2; ¢%),, and using the definition of the g-binomial
coefficient in (3.2). Now use (4.3) to create a partial theta identity by multiplying by
(—a)™ and summing. That is, (4.3) yields

S ayg™ = (" > (1) [’"] G (g (44
m=0 m=0 j=0 Jdp

As before, we set m = n + j in (4.4) to convert it to

> (~a)y"g" Z( a)"q" (=g )_alq” ["j’ } : (4.5)
m=0 j=0

6]2
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Finally, use the g-binomial expansion (3.1) to evaluate the inner sum on the right of

(4.5) to be

[e,¢] .

pari i e (aq?; ¢*)n+1
Then (4.5) yields

< (—a)"q"" (=q)n
—ay"g™ 4.6
MZ_:( ara Z @q® qPnt1 “0

which is a companion to Ramanujan’s identity (1.2).
Even though we have obtained the companion (4.6) by working backwards, still we
would like to have a direct proof of the equality

00 n, Ty _ n, T,
1+Z( a) q2 (ZQ)n—l Z( a)q 2( Q)n’ @7)
—  (aq* q%)n (@g?: g*)n+1
In [1] we gave two proofs of the equality (4.7), one by evaluating the difference
between the n-th partial sums of the two series and showing that this tends to O as
n — 00, and another by sketching a combinatorial argument. Here we shall give a
different proof of (4.7) by a mixture of combinatorial and g-theoretic ideas, in the
spirit of our arguments (2.11)-(2.13) that showed Theorem 3 to be interpretation

of (1.3).
First we observe that as per the discussion related to (2.9) and the interpretation of
Theorem 2, we have

(—a)"q" "2 (—q)u_1q"
(aq”; q*)n

(4.8)

to be the generating function of partitions into n distinct parts with smallest part even,
because the g” factor says that we have imbedded a column of length n to make the
smallest part even. Next, note that the expansion of the term corresponding to n = 0 on
the right in (4.7) begins with 1 which represents the null partition. So we decompose
this term as

B (4.9)
1 —aq? 1 —aq? ’

For n > 1, the n-th term in the series on the right in (4.7) differs from the n-th term
on the left by the factor (1 + ¢")/(1 — ag?**?). We utilize the decomposition

1_|_qn B aq2n+2(1 +qn) ;

1— aq2n+2 - (1-— aq2n+2) (4.10)
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along with (4.9) to rewrite the companion series as

o o

Z(—a)”qfn(—q» _ +§(—a>"qfn(—q>n_1 > (—a)"q™ag*™ 2 (=q)m
n=1

— (ag*; qPnt1 (@q®; q*)n (@q?; ¢Hm+1

m=0

+ i (—a)"q" "t V/2(—g),_1q"
= (aq?; ¢*)n

=14 zl + Zz + 23, respectively. “4.11)

Observe that we have deliberately changed the index of summation in > , from n
to m. Also we can attach the null partition term 1 in (4.9) to >, and start > ,
at m = 0 because that starting term in » , is the 1/(1 — ag®) term on the right
in (4.9).

Clearly 1 + X7 is Ramanujan’s series on the left in (4.7) which is the generating
function of partitions in Py, enumerated with weight w4 (7) as in Theorem 1. Also
from (4.8) we see that X3 is the generating function of partitions in Py, counted with
weight w4 () as defined in (2.3). Note however from the m-th term in X, a column
of twos of length m + 1 has been imbedded, but in the numerator of the m-th term
in X, we only have (—1)” and not (—1)"*!. Thus X, also enumerates partitions in
P4, but with weight —w4 (7 ), because the parity of the number of parts has changed.
Now given a partition in Py ., it is counted in each of X, and X3 exactly once, but
with weights of opposite sign. Thus

2,2, =0 (4.12)
and so (4.7) follows from (4.11) and (4.12).

Remarks. Although the companion has the elegance of being a sum for n > 0, there
is a redundancy in it, namely (4.12). Ramanujan’s series deals only with partitions in
Py, and so there is no redundancy there. Perhaps Ramanujan preferred the form with-
out any redundancy! The companion identity (4.7) will have a role when we establish
duals of a partition result of Berndt-Kim-Yee in Section 6.

5. Combinatorial proof of Ramanujan’s identity

In a recent paper [7], Berndt, Kim and Yee have provided a combinatorial proof of
(1.2) by interpreting the series in terms of certain vector partitions. In [7] they give
combinatorial proofs of a number of identities in Ramanujan’s Lost Notebook, and
the proof of (1.2) is by far the most difficult among all of theirs. We shall sketch
their proof of (1.2) by emphasizing the main idea which will be Lemma 1 below, and
show that a considerable simplification in the proof can be gained if we cast Lemma 1
as an analytic identity and prove it by a combination of analytic and combinatorial
arguments. Our approach leads to companions and duals of Lemma 1 which in turn
yield the companion identity (4.6).
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Consider the product
" "2 (=g (5.1)

in the numerator on the summand corresponding to # in (1.2). If we think of n(n+1)/2
as representing the triangular Ferrers graph 1 4+ 2 + - - - 4+ n and imbed the parts from
(—¢)n—1 as columns of length j for 1 < j < n — 1 into the triangular graph, we get
the following standard interpretation:

g" " tD/2(—g),_1 is the generating function of partitions w into n parts all distinct
such that

(1) smallest part is 1,
(ii) the difference between the parts is < 2.

The main idea in [7] is to give a very different interpretation of the term in (5.1) as
follows:

Lemma 1 (B-K-Y). The term ¢""tV/2(—g),_, is also the generating function of
partitions « into n distinct parts such that

(1) smallest part is 1,
(ii) A(m) < 2n, and
(iii) if 2k — 1 is the largest odd part, then ALL odd parts < 2k — 1 appear as parts.
Equivalently, the gap between consecutive odd parts is exactly 2.

Remark. The combinatorial proof of this lemma which involves the conversion of 7z
to 7 is very difficult. Once this lemma is established, the combinatorial proof of (1.2)
is easily completed as we show now using the procedure given in [7].

Completion of combinatorial proof of (1.2) using Lemma I. By Lemma 1, (1.2) is
the generating function of bi-partitions (z, o), where
7 is a partition as in Lemma 1, with (ii) of Lemma 1 interpreted as

Ar) < 2v(rw) (5.2)
and
o Is a partition into even parts such that
AMo) < 2v(w). (5.3)

The partition 7 is counted with weight (—a)* ™) and the partition o is counted with
weight a"(@) Next let 7, (resp. o.) denote the largest even part of 7 (resp. o) with the
convention that 7, = 0 if 7 is null, and o, = 0 if ¢ is null. There are now three cases:

Case l. t, =0and o, = 0.
In this case ¢ = ¢ and =« is the partition 1 4+ 3 + --- 4 (2k — 1). This yields the
term (—a)qu2 on the right hand side of (1.2).

Case 2. m, > 0,.

In this case remove 7, from 7 and add it to ¢ to get a new bi-partition (7', ¢').
Note that because 7, < 2v (), we must now have ¢’, < 2z’,. Also 1 is the smallest
part of =’. Thus (z/, 6’) satisfies the conditions (5.2) and (5.3) above, but we have
T, <o,
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Case 3. T, < 0,.

In this case remove o, from ¢ and add it to 7 to create a new bipartition (7', ¢'),
which satisfies the conditions (5.2) and (5.3) but now we have n/, > ¢’,.

Thus an involution has been created, namely

(r,0) > (x',0") (5.4)

which moves a bipartition in Case 2 to Case 3 and vice versa, but in this process the
parity of the number of parts changes and the weight attached to (7, o) cancels the
weight attached to (z’, ). Thus the only contribution is from Case 1 which yields
the partial theta series on the right in (1.2). This proves Ramanujan’s identity.

6. Simple proof of Lemma 1, duals, companions

We shall now give a simple proof of Lemma 1 by a combination of analytic and
combinatorial arguments. The ideas underlying this simplified proof lead to a dual of
Lemma 1 and companion results as well.

Simple proof of Lemma 1. Consider a partition 7 with n distinct parts, satis-
fying conditions (i), (ii), and (iii)) of Lemma 1. Let # have k odd parts, namely
1,3,5,...,(2k —1). Represent this by the term qkz. Note that 7 has n — k even parts,
all distinct, and all < 2n — 2. Represent these by ey > e2 > -+ > ¢,_¢. Remove 2
from e, _j, 4 frome,_i_1,...,and 2(n — k) from e; to get a partition #” into < n —k
even parts each < 2(k — 1) because 2(n — k) was subtracted from e;. The analytic
version of Lemma 1 is

n
2 n—1
qn(n+1)/2(—Q)n—l _ 2 qk . 6]2Tnk|: j| . (6.1)
q2

n—=k
k=1

In (6.1), the g-binomial term is the generating function of 7", and the g7+ term
accounts for the first n — k consecutive even positive integers subtracted from the
n — k even parts of 7. The sum over £ in (6.1) is to account for all possible partitions
into n distinct parts fitting the conditions of Lemma 1. Thus Lemma 1 is equivalent
to (6.1).

To prove (6.1), we divide both sides by (¢%: ¢*)n—1 and rewrite it as

qn(n+1)/2 n qkz qzrn,k
@n—1 = @% D1 @5 gDk

(6.2)

Note that the left hand side of (6.2) is the generating function of partitions into n
distinct parts with smallest part 1. Suppose this partition has k£ odd parts and n —k even
parts. Then the generating function of the sub-partition having k distinct odd parts is
qk2 /(g%; ¢®)i, and the generating function of the sub-partition having n — k distinct
even parts is g2+ /(¢?; ¢*)n—x. This needs to be summed from k = 1 to n as on the
right in (6.2) to account for all partitions, and not from k& = 0 because the smallest
part is 1. This proves (6.2) and hence Lemma 1.
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A Dual Result. In the above proof, there is one step for which the explanation is
not combinatorial, namely rewriting (6.1) as (6.2) by dividing by (¢%; ¢?),—1 and
performing the cancellations. These cancellations hide and bypass the difficult combi-
natorics underneath.

The above method leads to a dual to Lemma 1. To realize this, note that the
g-binomial coefficient enjoys the property

S
n—k 2 k—1 2 ’ ’
and so (6.1) is equivalent to

n

2ln—1

q""P(=q)u1 =D q* " q" [k_l} : (6.4)
k=1 q2

In (6.4) the g>T+* term by itself and not attached to the g-binomial coefficient can
be interpreted as saying that the even parts of the partition = are 2,4, ...,2(n — k).
This type of condition previously imposed on the odd parts is now imposed on the
evens. The g-binomial coefficient in (6.4) is the generating function of partitions into
< 2(n — k) even parts each < k — 1. Thus (6.4) is equivalent to the following dual of
Lemma 1:

Lemma 2. The expression in (5.1) is the generating function of partitions « into n
distinct parts such that

(i) smallest part is 1,
(i1) A(z) < 2n, and
(iii) if 2(n — k) is the largest even part, then ALL even parts < 2(n — k) appear as
parts. Equivalently, the gap between consecutive even parts is exactly 2.

Remark. There is a very nice combinatorial way of realizing the equivalence of
Lemmas 1 and 2 by interpreting (6.3) in terms of conjugation of Ferrers graphs.
More precisely start with a partition 7 into n distinct parts satisfying the conditions
of Lemma 1 and having k odd parts. Then as per the discussion related to (6.1),
7 can be decomposed into a triple of partitions (z1, 72, 73), where 7| is simply
1+34+---+QRk—1),mis2+4+---+2(n — k) and #3 is a partition into even
parts such that

v(r3) <2 —k) and A(ms) <2(k — 1). (6.5)

The inequalities in (6.5) relate to the g-binomial coefficient in (6.1). Now repre-
sent 71, Ty, 3 as 2-modular Ferrers graphs. Replace 73 by its conjugate 7 *3 as a
2-modular graph. Note that

v(r*3) <2(k — 1) and A(z*3) <2(n — k). (6.7)
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We interpret this conjugation as the ¢g-binomial coefficient in (6.4) and

[

as representing the imbedding of 7 *3 into x|, thereby producing a general partition
into k distinct odd parts with smallest part 1 and largest part < 2n. This yields a
partition 7 of the type satisfying the conditions of Lemma 2 with k odd parts, smallest
part 1 and the even parts being 2, 4,6, ..., 2(n — k). The procedure described above
converting the partitions 7 of Lemma 1 to 7’ of Lemma 2 is reversible. Thus Lemma 2
is equivalent to Lemma 1 and is its dual.

Companions. The ideas underlying (6.1) and (6.2) involving the partitions 7 satis-
fying the conditions of Lemma 1 and decomposing them into 71, 72, 73 to get the
series in (6.1), would work even if we did not have the condition that the smallest part
should be 1. So if we simply consider a partition into n distinct parts, then we first
replace (6.2) by

qn(n+l)/2 n qkz qu,,_k

@ =@ @5

(6.8)

which is proved in exactly the same way as (6.2). Then working backwards, we write
(6.8) in the equivalent form

n
qn(n+1)/2(_q)n _ quz.QZT”k|: n i| ) (6.9)
n—k
k=1 q2

Now (6.9) and (6.8) are the companions to (6.1) and (6.2) respectively. The standard
interpretation of the product on the left in (6.9) is that

q" /2 (—q), is the generating function of partitions g into n parts all distinct
such that the difference between the parts is < 2.

By interpreting the series in (6.9) we have the following companion to Lemma 1:

Lemma 3. The term ¢""*tV/2(—gq), is also the generating function of partitions m
into n distinct parts such that

(1) A(wr) <2n, and
(11) if 2k — 1 is the largest odd part, then ALL odd parts < 2k — 1 appear as parts.
Equivalently, the gap between consecutive odd parts is exactly 2.

Next by taking the conjugate of partitions enumerated by the g-binomial coefficient
in (6.8) and following the imbedding idea as above, we get a dual of Lemma 3 which
is a companion to Lemma 2, namely:

Lemma 4. The term ¢""tV/2(—gq), is also the generating function of partitions
into n distinct parts such that

(1) A(7) <2n, and
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(i) if 2(n — k) is the largest even part, then ALL even parts < 2(n — k) appear as
parts. Equivalently, the gap between consecutive even parts is exactly 2.

Just as Lemma 1 yielded a combinatorial proof of Ramanujan’s identity (1.2),
Lemma 3 gives a combinatorial proof of our companion identity (4.6) as we demon-
strate now:

Decompose the summand corresponding to n on the right in (4.6) as

1

(_a)nqn(n+l)/2(_q) -
" (aq%; gDt

(6.10)
Using the decomposition in (6.10), interpret the series on the right in (4.6) as the
generating function of bi-partitions (7, o) such that

7 is a partition as in Lemma 3, with (i) of Lemma 1 interpreted as

Mr) < 2v(w) 6.11)

and
o: is a partition into even parts such that

o) <20(x) + D). (6.12)

Let 7, and o, denote the largest even parts of 7 and ¢ respectively. As before, we
have three cases.

Case 1. t, =0and o, = 0.
In this case ¢ = ¢ and =« is either null or is the partition 1+3+-- -4+ (2k —1). This

yields the term (—a)qu2 on the right hand side of (1.2) including the case k = 0.

Case 2. m, > 0,.

In this case remove 7, from = and add it to ¢ to get a new bi-partition (7', ¢').
Note that because 7, < 2v(r), we must now have o', < 2(x’, + 2). Thus (z’, ")
satisfies the conditions (6.11) and (6.12) above, but we have 7/, < ¢’,.

Case 3. m, < 0,.

In this case remove o, from ¢ and add it to 7 to create a new bipartition (7', ¢'),
which satisfies the conditions (6.11) and (6.12) but now we have 7/, > ¢’,.

Thus an involution has been created, namely

(m,0) > (z',0") (6.13)

which moves a bipartition in Case 2 to Case 3 and vice versa, but in this process the
parity of the number of parts changes and the weight attached to (7, o) cancels the
weight attached to (z’, ). Thus the only contribution is from Case 1 which yields
the partial theta series on the left in (4.6).

Remarks.

1) Interestingly, even though Lemmas 2 and 4 are the duals of Lemmas 1 and 3, we
do not know of a different partial theta identity emerging from them.
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2) Berndt-Kim-Yee observe [7] that while Lemma 1 yields a combinatorial proof
of Ramanujan’s identity (1.2), it does not provide a combinatorial proof of our
weighted partition version of (1.2), namely Theorem 1. Recently Chen and Liu
[10] have constructed an involution which simultaneously provides a combinatorial
proof of our weighted partition Theorems 1 and 3, and we discuss this next.

7. An involution for the two weighted partition theorems

Chen and Liu [10] have recently established an involution on the set of partitions
into distinct parts with smallest part odd that simultaneously provides a combinatorial
proof of both our weighted partition Theorems 1 and 3. We will describe the Chen-Liu
construction in this section.

Before discussing this involution, we note that for partitions 7 € Py ,, the power
of @ in wa(7) in Theorem 1 is always at least the power of a in w, (7 ) in Theorem 3.
More precisely, if we define the exponents e4 (7)) and e, (7 ) by

wa(r) = (=1)"@g4®  and  w,(r) = (—=1)" @@, (7.1)

then
ea(m) > eq(m), forall =w € Py, (7.2)

with equality if and only if 7 : 143 + --- + (2k — 1) is the standard partition of k2.
The inequality (7.2) follows at once from the definitions of w4 and w,, because (2.2)
implies

v(n) v(m)

ealm) =D 0= D 1 =v(@) = ealn) = vo(n), (73)

i=1 i=1
with equality occurring in (7.3) if and only if 7 has no even parts and the gaps between
the consecutive odd parts starting with 1 are all equal to 2. Under the involution of
Chen and Liu, each partition # € Py, of an integer n is assigned its dual or mate
n’ € Py, of the integer n such that

oA(m)+0a(r)=0=0w,(r) +w,(x"), if © #x, (7.4)

and
#=nx" ifandonlyif 7 :1+3+5+---+2k—1) (7.5)

which is precisely when equality occurs in (7.2).
Chen and Liu interpret the k-th summand in Ramanujan’s partial theta series

(—a)* " * D2 () x (7.6)

(aq?; 4*)
as the weighted generating function of partitions in Dy x Ej, where Dy is the set
of partitions ¢ into k distinct parts with smallest part 1 and gap between consecutive
parts < 2, and Ej is the set of partitions ¢ into even parts < 2k, with the partition
d being counted with weight (—a)¥ and the partition ¢ counted with weight a*().
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Thus the term in (7.6) is the weighted generating function of these bi-partitions
(0,0) € Dy x Ei. Notice that for 6 € Dy, Chen and Liu use the standard inter-
pretation for the product in (5.1) and not the deeper interpretation of Berndt-Kim-Yee
provided by Lemma 1.

The bi-partitions (J, ) are in one-to-one correspondence with the partitions
m € Py, by the imbedding process that we used to get the weighted partition inter-
pretation of (1.2) in Theorem 1. The involution of Chen and Liu is on the bi-partitions
(d, o), but it easily translates to an involution on 7 € Py, in view of the imbedding.

Represent ¢ and ¢ as 2-modular graphs. Let 61 > d» > --- > J denote the parts
of §, and o1 > o7 > ... denote the parts of ¢. Chen and Liu define a statistic called
modular leg hook in ¢ as follows: If J; is an even part other than the largest part, the
modular leg hook H; consists of all the nodes in the i-th row of the 2-modular graph
of J together with the nodes in the first column above the i-th row of J. Denote the
sum of the nodes on the modular hook H; by |H;]|.

Among the modular hooks H;, we are interested in those such that the removal of
H; from § € Dy yields a 2-modular graph of a partition 6’ € Dy_;. We call such a
hook as “acceptable” — this is our terminology, not that of Chen and Liu. Among all
acceptable modular leg hooks H; of d, consider one that has maximum height (namely
with i maximal). We denote such a maximal acceptable modular leg hook by H (9), if
it exists. Clearly

|H(©)| <2k —2. (7.7)

Following Chen and Liu, we describe the involution by considering several
possibilities.

Type A. There are two cases here.

Case 1. Suppose H () exists and |H (J)| > o1. Then remove H (J) from ¢ and add it
as a part to o, thereby creating a bi-partition (&', 6") € Dy_1 x Ex—1 in view of (7.7).

Case 2. Either H(0) exists and |H(d)| < o1, or H(d) does not exist and d; + 2 < o7.
In this case remove o] from ¢ and insert it as the maximal acceptable modular hook
into J. This creates a bi-partition (¢',6") € Dy x E. It is to be noted that the
insertion of o1 into ¢ as the maximal acceptable leg hook is not at all obvious. But it
can be achieved as follows: Let i be the largest positive integer such that 61 — 1 —2i >
0i+1. Then add 2 to the first i parts of d; and insert o1 — 2i as a new part of J just above
di+1. It follows that after the insertion of &) into J, the resulting bi-partition (&', ¢”)
fits into Case 1 above, and so we have an involution.

Even though an involution has been set up, Type A clearly does not exhaust all
possibilities. The remaining cases are covered under Type B. Suppose H (d) does not
exist and o1 < J 4 2. Here if 0 has even parts, we choose the largest among them and
denote it by J,. There are two cases:

Case 1. Suppose J, > o1. In this case remove J, from ¢ and add it to o as the largest
part. Note that J, < 2k — 2, and so the resulting bi-partition (¢, 6’) € Dy x Ex_1.

Case 2. Suppose J, < o1. In this case remove o1 from ¢ and add it to J as a part (not
as a modular leg hook!). The resulting bi-partition (&', ') € Dy4+1 x Ek.
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As in Type A, here in Type B, the correspondence between (d, ¢) and (&, ¢’) is an
involution where one passes from Case 1 to Case 2 and vice-versa if (d, o) # (¢, ¢').

Notice that Types A and B cover all possibilities when (J, ) # (&', c’). This
involution on the bi-partitions, translates to an involution on the partitions 7 € Py ,.
That is

(0,0) > 7 € Piy, (8,0)—>x' € Py, (7.8)
b,0)— (0,0, m— ' (7.9

Under this involution, the number of parts of J and ¢ are of opposite parity, and the
number of parts of 7 and 7z’ are of opposite parity whenever 7 # zn’. Notice that in
going from (J, o) to (&', 6’) and vice-versa, only one even modular leg hook (or part)
is moved, and this does not affect the power of a attached to either bi-partition.
Thus owing to the imbedding and the correspondence in (7.8), we see that under the
involution

eam) =ea(r)), but (=1)"@ = (=" if 7 £7'. (7.10)

Consequently the first equality in (7.4) holds whenever © # «’.

The only remaining case is when ¢ is empty and J has no even parts, which means
oisjust 1 +3 4+ --- 4 (2k — 1). Thus these partitions are the only fixed points under
the involution. Thus the involution proves Theorem 1 combinatorially.

To realize Theorem 2 through the involution, utilize the correspondence given by
(7.9) and observe that under the involution for the bi-partitions, the number of odd
parts remains unaffected. That is

Vo(m) =vo(r') andso e, (7) = e (). (7.11)

Since the number of parts of 7 and x’ are of opposite parity, we see that the second
inequality in (7.4) holds whenever = # n’. The case 1 = x’ is precisely when 7 is
the partition 1 43 4 - - - + (2k — 1) of k2, and so the involution proves our Theorem 2
as well.

8. A partial theta identity from the Rogers-Fine identity

Euler’s Pentagonal Numbers Theorem, as well as the partial theta identities of
Ramanujan and Andrews, all deal with partitions into distinct parts. In this concluding
section, we will discuss a partial theta identity involving the squares, namely (1.4),
that actually deals with unrestricted partitions. This identity falls out as a special
case of a variation of the famous Rogers-Fine identity as was noticed and proved
in [2].

The generating function of unrestricted partitions 7 in which we keep track of
vg () and either v(z) or A(x) but not both, has a product representation, namely

Z(l — q) @ @ go ) = (azﬂ’ (8.1)
(290

T
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and therefore

31 - aye® g - B0 (8.2)
(z29) oo

T

as well, because under conjugation of Ferrers graphs of partitions, v(x) and A(x) are
interchanged. However the three variable generating function

fla,b,e;q) =D (1—a)t®p W ge @ (8.3)
T

has only a series representation

flabegy =1+ LZDDn1bq (8.4)
n=1

(bg)n

but not a product representation. We feel that even though f(a, b, c; g) is so funda-
mental, the lack of a product representation is one reason it has not been studied
closely.
The change of v () into A(x) and vice-versa induced by conjugation clearly proves
the symmetry property
fla,b,c;q9) = f(a,c,b;q), (8.5)

but this symmetry is not present in the series representation in (8.4). In an attempt
to obtain a series representation for f(a, b, c; g) that renders the symmetry in (8.5)
explicit, we studied partitions by their Durfee square representations and that led us
to the second series in (1.5) which is symmetric in b and c.

The well-known Rogers-Fine identity in the form obtained by Fine
[[11], Eq. (14.1)] is

0 n 0 n.n,n* 2n+1
1—
Flofoeiq) = (@g)nt" _ 3 (aq)n(atq/B)np"t"q" (1 —atq )
=0 (Bn =0 B n(T)nt1
(8.6)
Our function f and the Rogers-Fine function F are connected by the relation
a1-5
209 o, 5 ) — 1) = Flab, by, cq: 9) (8.7)
(1 —a)bcq
as can be seen from (8.4), (1.5) and (8.6). If we take
c=-b and a=-1, (8.8)
then the second series in (1.5) reduces to
ad 2
L+2 (=)""q", (8.9)

n=1

which is identity (1.4). In view of the partition interpretation of f(a, b, ¢; q) given in
(8.3), Theorem 4 is the partition version of (1.4). It is obviously of interest to prove
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Theorem 4 combinatorially because we wish to understand how the cancellation of
the weights on unrestricted partitions given by (2.6) takes place to yield the partial
theta series in (1.4). Such a combinatorial proof of Theorem 4 was given in [2] and
we describe the main ideas here.

Given any partition z and its Ferrers graph, we denote its Durfee square by D(x),
the portion to the right of D(x) by x,, and the portion below D(x) by 7. As in [2],
we call a partition 7 to be primary if 7y, is empty. A starting fundamental observation
in [2] is that the set of all partitions of a given integer N can be obtained by con-
sidering all primary partitions of N and then sliding the columns to the right of the
Durfee squares of such partitions and placing them below the Durfee square. One of
the important invariants under the sliding operation is

M) +v(n)

as well as the size of all the successive hooks of the partition, with each node on the
diagonal of the Durfee square being the vertex of a hook. In [2] the following stronger
version of Theorem 4 was proved combinatorially:

Theorem 5. Let @ be any given primary partition for which m, is non-empty. Call
such a primary partition non-trivial. Consider the set of all partitions generated by a
given non-trivial primary partition (including itself) by performing all possible sliding
operations. Then the sum of the weights in (2.6) over all such partitions generated by
a non-trivial primary partition is 0.

In [2] Theorem 5 was proved in a sequence of steps which we briefly recall here:

Step 1. If we have a sum in which the first term is 2, consecutive terms have opposite
signs, the absolute value of the last term is 2, and the absolute value of every term
other than the first term and the last term is 4, then the sum is 0, provided the sum has
at least two terms.

Step 2. In a given nontrivial primary partition, consider the columns of a fixed length £
in 7. Each set of columns of fixed length contributes a corner of 7. And each corner
contributes a factor 2 to the factor 2" in the weight () in (2.6). If a column of
length ¢ is slid down and placed as a row below the Durfee square, then there are two
possibilities:

(i) There are no more columns of length ¢ in z,. Thus v, has decreased by 1 for the
portion which is D(z) + x,, but we have gained a (different) part by the row(s)
below the Durfee square. Thus 2"¢(™) is unchanged, as is the expression in (8.8),
but v(z ) has increased by 1. This means the weight w (7 ) has changed in sign and
the net effect is

2+ (=2)=0.

(ii) After sliding a column of length ¢, we still have a column of length ¢ in 7. Thus
the corner in 7, that originally was there, still remains, but a new part of length £
has been added to the Ferrers graph due to the sliding operation. This contributes
a factor of 4 to the weight w (7). However, in this case, sliding more columns
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of length ¢ only increases v(x) but v (xr) increases by 1 only the very first time
a column of length ¢ is slid down, but not later. Thus if there are k columns of
length ¢, the contribution of these columns to the weight @ (z) under the sliding
operation is

2—-444—-4....£4F2=0 (8.10)

where the sum in (8.9) has k + 1 > 2 terms.

Thus the contribution to the weight w (7 ) in (2.6) by performing all possible sliding
operations on a set of columns of a given length ¢ is the factor 0.

Step 3. Independence — Sliding a set of columns of a given length is independent
of sliding a set of columns of a different length. The interpretation of this is that we
would be considering products of expressions as in (8.9) when summing the weights
o () over all partitions generated by a given non-trivial primary partition.

In summary, the sum of the weights of all partitions which are born out of non-
trivial primary partitions would be zero. This proves Theorem 5. Finally if « is a trivial
primary partition, then z, is empty, and so 7 is the unique partition that it generates.

In this case its weight is
2(_1)1)(71’)—0-)»(71')

which is the k-th term in the series in (1.4) if 7 is the k x k square of nodes. Thus
Theorem 4 follows.

Remarks.

(1) We included a discussion of Theorem 4 here because once again it is the squares
alone that survive, thereby yielding the partial theta series in (1.4), and to show
how such a partial theta series with squares can be associated naturally with unre-
stricted partitions instead of partitions into distinct parts.

(i1) Fine’s proof of (8.6) (see [[11], Eq. 14.1]) involves the transformation properties
of F(a, S, t; q). Our proof of (1.5) in [2] is purely combinatorial and uses the
Durfee square representation of the Ferrers graphs of partitions.

(iii) Fine noticed the striking special case of his identity which yields the partial theta
series (8.9) (see [11], Eq. 14.31). Our variant of Fine’s identity, namely (1.5),
has a natural partition interpretation, and so it enabled us to cast the partial theta
identity as the weighted partition result, namely Theorem 4. In going from (1.5)
to (1.4) there was significant cancellation of various terms. In spite of these can-
cellations, it was possible to give a combinatorial proof of (1.4) and hence of
Theorem 4, again using Durfee squares, but in a very different manner.

@iv) If we choose b = —1 in (1.4), then the partial theta series there becomes a theta
series which has a product representation, namely

< k k K2 _ (1-4")
1+2k§(—1) q k_z_loo( kg H T (8.11)
By using the expansion
(1—-4") 2q™
(I+qm  (+qm

=1 4+2{—=¢"+¢"" — ¢ + 4" — ...}, 8.12)
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we can interpret the infinite product in (8.11) as the weighted generating function
of unrestricted partitions with weight

(- l)v(ﬁ)zvd(ﬂ)
which by conjugation is the same as attaching the weight
(—1)*(m)pva(m) (8.13)

to unrestricted partitions. Notice that when b = —1, the weight w(x) in (2.6)
reduces to the weight in (8.13).
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